ENR211 STATISTICS FOR ENGINEERS

Problem Set 5

Design Of experiments

- 1. What is a factorial design?
- 2. Why are factorial designs well suited to empirical studies? Suggest an application in your own field.
- 3. What is a $4^2 \times 3^3 \times 2$ factorial design? How many runs are there in this design? How many variables does it accommodate?
- 4. What is a two-level factorial design?
- 5. How many runs are contained in a two-level factorial design for four variables?
- 6. How many runs does a 2^6 design have? How many variables? How many levels for each variable?
- 7. Explain any two factorial designs with the help of suitable example.
- 8. Why Taguchi's approach is preferred as compared to Classical approach of experimental design? Explain with the help of a suitable example.
- 9. Why do we replicate our experimental runs?
 - (a) So we can look for special causes
 - (b) To obtain a better estimate of the error and look at interaction
 - (c) To determine the factor levels.
 - (d) So we can look at the same thing run again
- 10. If an experimenter is interested in looking at variables that effect the response, those variables are called
 - (a) Treatments
 - (b) Factors
 - (c) Effects
 - (d) Levels
- 11. Factors in a factorial design are the _____
 - (a) The experimental variables
 - (b) The independent variables
 - (c) The dependent variables
 - (d) The organismic variables
- 12. A team of researchers aimed to study the impact of Temperature (T), Concentration (C), and Catalyst (K) on the yield of a chemical reaction. They selected two levels for each factor: 160°C and 180°C for Temperature, 20% and 40% for Concentration, and Catalysts A and B. By conducting eight experimental runs with all possible factor combinations, they measured the average yield (%) for each setup. The experiment provided insights into how these factors influenced the reaction's efficiency.

Run	Temperature,	emperature, Concentration, Cataly		Yield,
Number	T (°C) C (%)		K (A or B)	y (%)
1	160	20	А	60
2	180	20	А	72
3	160	40	А	54
4	180	40	А	68
5	160	20	В	52
6	180	20	В	83
7	160	40	В	45
8	180	40	В	80

Operational Levels of Factors

- (a) Find main and interaction effects. Express the expected yield, \hat{y} as a function of T, C and K.
- (b) Find the yield for the following settings.
 - i. T=160°C, C=30%, B
 - ii. T=170°C, C=20%, A
 - iii. T=180°C, C=35%, B

You may use the following tables.

Temperature, T (°C)	Concentration, C (%)	Catalyst, K	
- +	- +	- +	
160 180	20 40	A B	

Т	С	Κ	Average Yield y	
			from Duplicate Runs	
-	—	—	60	
+	—	-	72	
-	+	_	54	
+	+	_	68	
-	—	+	52	
+	—	+	83	
-	+	+	45	
+	+	+	80	

Coded Units of Factors

13. The purpose of a set of trials is to discover the effects of two alloying elements, namely, nickel and manganese on the breaking strength of a certain product. Data is shown below. Find the main and interaction effects.

Nickel (%)	Manganese (%)	Breaking Strength (ft-lb)
0	1	35
3	1	46
0	2	42
3	2	40

14. An engineer is interested in observing the effect of cutting speed (A), tool geometry (B), and cutting angle (C) on the life (in hours) of a machine tool. Two levels of each factor are chosen, and three replicates of a 2³ factorial design are run. The results follow:

Α	В	С	Treatment	Replicate		
			Combination	I	II	III
-	-	-	(1)	22	31	25
+	-	-	a	32	43	29
-	+	-	b	35	34	50
+	+	-	$^{\rm ab}$	55	47	46
-	-	+	с	44	45	38
+	-	+	ac	40	37	36
-	+	+	\mathbf{bc}	60	50	54
+	+	+	abc	39	41	47

 Table 1: Factorial Experiment Results

Find the main and interaction effects.