Advanced Statistics

Instructor: Shashi Prabh

Problem Set 4. Probability inequalities, convergence

References

- FPP: Statistics (4/e), Freedman, Pisani, Purves
- Wasserman: All of Statistics, Springer, 2003
- JWHT: An Introduction to Statistical Learning with Applications in R, James, Witten, Hastie and Tibshirani, Springer, 2017
- VS: An Introduction to R, Venables and Smith
- 1. A coin is tossed 100 times. What is the probability of getting 90 or more heads? Compare the exact value against Markov and Chebyshev bounds.
- 2. State and prove the weak law of large numbers.
- **3.** Let X_1, X_2, \ldots, X_n be iid random variables where $X_i \sim \mathcal{U}([0,1])$. Find $\Pr(\sum_{i=1}^{20} X_i \geq 15)$ using Markov, Chebyshev and central limit theorem.
- 4. Prove that mean square convergence implies convergence in probability.
- **5.** Let $X_n \sim \mathcal{N}(0, 1/n)$. Show that $X_n \stackrel{p}{\longrightarrow} 0$.
- **6.** Let the CDF $F_{X_n}(x) = 1 (1 1/n)^{nx}$ when x > 0 and $F_{X_n}(x) = 0$, otherwise. Show that $X_n \stackrel{d}{\longrightarrow} \mathcal{E}(1)$, where \mathcal{E} denotes exponential distribution.
- **7.** Let $X_n \sim \mathcal{G}(\lambda/n)$ where \mathcal{G} denotes geometric distribution. If $Y_n = X_n/n$, show that $Y_n \xrightarrow{d} \mathcal{E}(\lambda)$.
- **8.** Let X_1, X_2, \ldots, X_n be iid random variables where $X_i \sim \text{Bern}(p)$. Define $S_n = X_1 + \ldots + X_n$. Find $\Pr(S_n \leq 30)$ where n = 42, p = 0.5. Find $\Pr(S_n = 30)$ using exact calculation and compare with the result produced using the central limit theorem.
- **9.** Let $X \sim \mathcal{N}(25, 5)$. Find:
 - i. Pr(X > 30)
 - ii. $Pr(20 \le X \le 30)$
 - iii. Pr(|X 30| > 10)
- 10. Examination marks of a certain course is well approximated by $\mathcal{N}(70,49)$. If 4 students are selected randomly, show that the probability that exactly two of them attained at-least 84 marks is 0.003. What is the probability that exactly two of them have attained at-least 77?