
Computer Networks, Fall 2023

Instructors: Shashi Prabh

Lab 4: Streaming audio/video files over UDP

Due: March 17 (section 2), 20 (section 1)

1 Objective

In this lab you will gain familiarity with sending music and video at a suitable data rate
over UDP socket. As you know, UDP is a connectionless protocol. The protocol does
not have provision for the receiving node to send acknowledgments back to the sender.
Accordingly, the sender does not automatically retransmit lost packets. Hence sending
data at too high a rate can lead to packet loss. On the other hand, sending data at
too low a rate will cause non-smooth playback if the client plays the audio/video file
while receiving it. You will also evaluate the performance of your implementation. Use
client_udp.c and server_udp.c available at the course website to get started. Have
fun!

2 Client

After creating socket, the client sends GET in its first (and only) message to the server
to get the audio or video feed. You can redirect the incoming data in a file and play
from the file using ALSA, SOX, VLC or some other player. For example, the command
cat out.wav | vlc - causes VLC to play the stream redirected to out.wav. We will be
running servers which you can use to test your client.

3 Server

The server keeps listening for requests in an infinite loop. It sends a given file if it receives
GET from the client. Sending any other string will have no effect. The server signals the
end of message by simply terminating the connection. For this lab, you can send the same
file to all clients. You can not, however, assume the file size to be either known or small.
Your server should keep reading a block of data and sending that block to the client until
the end of file is encountered or the server is terminated. Note that UDP has a payload
limit of 65.5 KB.

4 Streamig

Audio/video must first be converted to a format which can be played from any point. For
this lab, you are free to choose existing audio/video converters to prepare the content to
be streamed and to render the content on the client side. You can NOT, however, use
any existing application for transmitting and receiving content over the network.
You may find the tools ffmpeg for file conversion and ffprobe for getting file informa-
tion useful. Do man ffmpeg and visit www.ffmpeg.org for documentation of these tools.



For a start, you can covert files to MPEG transport stream (MPEG-TS) container for-
mat, which is suitable for live streaming, using ffmpeg form command-line as follows:
ffmpeg -i inputfile.mp4 -f mpegts streamable_output.mp4

The output can be conformed to match certain dimensions or bit-rate by using various
switches and filters.

5 Performance

Send a large file (10 MB or larger) from a server to a client. Both could be running on the
same machine, or preferably connected over wireless link (try both!). Compare the size of
sent and received files. Explain any discrepancy. One (easy) way to regulate the sending
data rate is to insert delay between consecutive sendto()s using nanosleep() call (for
more information do man nanosleep). Extend the server code so that it takes the UDP
payload size and nanosleep() parameters as arguments. Calculate the data rates for a
few settings and plot the received file size as a function of data rate.
Sending audio/video at too low a rate can lead to bad user experience. For a few au-
dio/video files of your choice, determine appropriate data rate. Vary (decrease as well as
increase) the data rate and observe its effect by playing the received data in real time.
Report the attributes of data (type, bit rate(s) and encoding(s)) along-with your settings,
that is, payload size and sleep delays, and the resulting data rate needed for playing the
data smoothly in real time.

6 Extra credit 1 - 20%

Make your server serve multiple clients simultaneously.

7 Extra credit 2 - 20%

Make your server determine appropriate data rate automatically from the audio/video
file. On the client side, stream the data directly without storing it in a file. You’ll need to
buffer some data before starting to play. For this part, you need to demonstrate delivery
of live audio, preferably live video, to client.

Evaluation

� Server can send some specified file to any number of clients. [3 pts, latest by March
10/12] TA:

� Client can store the received file. Received music or video files can be played back.
[4 pts, latest by March 10/12] TA:

� The server correctly paces the datagrams: the received file can be played concur-
rently. [3 pts] TA:

� Multithreaded server. [2 pts] TA:

� The server correctly paces the datagrams automatically. [3 pts] TA:


