
Computer Networks, Fall 2022

Instructors: Shashi Prabh

Lab 3: Streaming multimedia over UDP

Due: March 11

1 Objective

In this lab you will gain familiarity with sending music and video, live or from files, at a
suitable data rate over UDP socket. As you know, UDP is a connectionless protocol. The
protocol does not have provision for the receiving node to send acknowledgments back
to the sender. Accordingly, the sender does not automatically retransmit lost packets.
Hence sending data at too high a rate can lead to packet loss. On the other hand, sending
data at too low a rate will cause non-smooth playback. You will gain understanding of
the impact of bandwidth and delay on network’s performance. Use client_udp.c and
server_udp.c available at the course website to get started. Have fun!

2 Client - 30%

After creating socket, the client sends GET in its first (and only) message to the server
to get the audio or video feed. You can redirect the incoming data in a file and play
from the file using ALSA, SOX, VLC or some other player. For example, the command
cat out.wav | vlc - causes VLC to play the stream redirected to out.wav. We will be
running servers which you can use to test your client.

3 Server - 40%

The server keeps listening for requests in an infinite loop. It sends a given file if it receives
GET from the client. Sending any other string will have no effect. The server signals the
end of message by sending BYE. For this lab, you can send the same file to all clients. You
can not, however, assume the file size to be either known or small. Your server should
keep reading a block of data and sending that block to the client until the end of file is
encountered or the server is terminated. Note that UDP has a payload limit of 65.5 KB.

4 Performance - 30%

Send a large file (10 MB or larger) from a server to a client. Both could be running on the
same machine, or preferably connected over wireless link (try both!). Compare the size of
sent and received files. Explain any discrepancy. One (easy) way to regulate the sending
data rate is to insert delay between consecutive sendto()s using nanosleep() call (for
more information do man nanosleep). Extend the server code so that it takes the UDP
payload size and nanosleep() parameters as arguments. Calculate the data rates for a
few settings and plot the received file size as a function of data rate.
Sending audio/video at too low a rate can lead to bad user experience. For a few au-
dio/video files of your choice, determine appropriate data rate. Vary (decrease as well as
increase) the data rate and observe its effect by playing the received data in real time.



Report the attributes of data (type, bit rate(s) and encoding(s)) along-with your settings,
that is, payload size and sleep delays, and the resulting data rate needed for playing the
data smoothly in real time.

5 Extra credit 1 - 10%

Make your server serve multiple clients simultaneously.

6 Extra credit 2 - 15%

Make your server determine appropriate data rate automatically from the audio/video
file. On the client side, stream the data directly without storing it in a file. You’ll need to
buffer some data before starting to play. For this part, you need to demonstrate delivery
of live audio, preferably live video, to client.

7 Submission

Submit your client and server codes, a makefile, and a report on your performance ex-
periments by 4:00 PM on the due date. The report must list all team members’ names.
Demo on the due date is necessary to get credit.


