Artificial Intelligence

7. Logical Agent, Propositional Logic

Shashi Prabh

School of Engineering and Applied Science
Ahmedabad University



Contents

unknown

factored

-————03.\

structured First-order ~»

e s = =



Contents

Goal:

Design knowledge-based agents that use reasoning over an

internal representation of knowledge to decide the actions.

Topic

S
Basic concepts of knowledge, logic, reasoning

Knowledge-Based Agents

Propositional logic syntax and semantics
Inference in Propositional Logic

* Inference by model checking

* Inference by theorem proving

Wumpus world agent using propositional logic



Logic
* Example:
* All professors need coffee.

* Russell and Norvig are professors.
* Do they need coffee?

* Why bother?
* Detective work -- Sherlock Holmes: Holmes always uses logic and
evidence to reach conclusions.

* Medical diagnosis: Doctors don’t see bacteria directly. They infer
disease from symptoms and background knowledge.

* Al examples: Logical agents underpin expert systems, theorem
provers and reasoning-based Al applications



Knowledge-Based (KB) Agents

* You come back to your dorm room one night. The lights are off,
the door is unlocked, and you hear music playing softly.

* Your roommate is usually very careful — never leaves the door
unlocked, never plays music without headphones.
* What do you conclude?

* You used: knowledge about the roommate and new evidence.
* This is what the logical agents do.

* Alogical agent:
 Encodes facts and rules about the world.
e Senses new information.
* Infers what’s true though it wasn’t stated directly.



The Wumpus World

* Partially observable environment

§SSS s~
L4 S e n S O rs 4 Stench /E\__/ PIT
* Breeze, Stench, Glitter, Bump, Scream T~
3 t Sséens | ML | 2B

AT g

* Percepts are 5-tuple: if there is a stench and a

breeze, but no glitter, bump, or scream 2 |s3ses Bz~
* [Stench, Breeze, None, None, None]

gl piT |

* Performance measure LR
* +1000 for exiting the cave with the gold 1 . 3 s

* —1000 for falling into a pit or being eaten

* -1 for each action taken
e —10 for using up the arrow



Knowledge-Based (KB) Agents

* Knowledge can be used to make good decisions, i.e., intelligent
behavior

* In1960s, McCarthy introduced the idea of using logic to
determine actions in “Programs with Common Sense”

* Rational agents can be defined by the knowledge they possess
rather than the programs they run [Newell, “The knowledge level,” 1982]

* Problem solving agents have limited flexibility.

* A good path finding agent is useful for finding a path but not
generalizable to any other task

* They don’t know general facts

* The only choice for representing what it knows in a partially
observable environment is to list all possible concrete states

7



Knowledge

* A KB agent uses logic to represent knowledge
* These agents can combine and recombine information

* Knowledge is contained in agents in the form of sentences in a

knowledge representation language that are stored in a knowledge
base

* Knowledge base = set of sentences in a formal language

* Declarative approach to building an agent
* Tell : add new sentence (what it needs to know) to the KB
* Can also learn the knowledge
* Ask :the agent queries the KB what to do
* Answers must be consistent with the KB



KB Agents

function KB-AGENT(percept) returns an action
persistent: KB, a knowledge base
t, a counter, initially 0O, indicating time

TELL(KB, MAKE-PERCEPT-SENTENCE( percept,t))
action<+— ASK(KB, MAKE-ACTION-QUERY(?))
TELL(KB, MAKE-ACTION-SENTENCE(action, t))
t—t+1

return action



Knowledge

* A KB agent is composed of a knowledge base and an
inference mechanism

* Agents can be viewed at the knowledge level i.e., what they
know, regardless of how implemented (Newell)

* A single inference algorithm can answer any answerable
question

Knowledge base Domain-specific facts

Inference engine Generic code




KB Agents

* Agents acquire knowledge through perception, learning,
language
* Knowledge of the effects of actions (“transition model”)

* Knowledge of how the world affects sensors (“sensor
model”)

* Knowledge of the current state of the world

* Can keep track of a partially observable world

* Can formulate plans to achieve goals

11



Quiz
1. Which of the following best describes a logical agent?
A. An agent that maps percepts directly to actions

B. An agent that uses knowledge representation and inference to
decide actions

C. An agent that memorizes all possible actions

2. What is the role of the knowledge base (KB) in a logical agent?
A. To store sensor data only

B. To generate random actions

C. To store facts and rules about the world, and support inference

14



Quiz
1. Which of the following best describes a logical agent?
A. An agent that maps percepts directly to actions

B. An agent that uses knowledge representation and inference to
decide actions

C. An agent that memorizes all possible actions

2. What is the role of the knowledge base (KB) in a logical agent?
A. To store sensor data only

B. To generate random actions

C. To store facts and rules about the world, and support inference

15



Quiz
3. Suppose a knowledge base contains the following:
* “All dogs are mammals”

 “All mammals are animals”
e “Sketch is a dog”

Using logical inference, which statement can the agent derive?
A. Mammals have four legs

B. Sketch is an animal

C. Sketch is a mammal

D. Both (B) and (C)

16



Quiz
3. Suppose a knowledge base contains the following:
* “All dogs are mammals”

 “All mammals are animals”
e “Sketch is a dog”

Using logical inference, which statement can the agent derive?
A. Mammals have four legs

B. Sketch is an animal

C. Sketch is a mammal

D. Both (B) and (C)

17



Syntax and Semantics

* KB consists of sentences formed according to the syntax
* Syntax: What sentences are valid?

* Example:x +y =3
* Semantics determines the truth of a sentence (only true or false) in

a possible world or model
e What do the sentences mean?

* What are the possible worlds?
* Which sentences are true in which worlds?
* Definition of truth

* x +y =3andy + x = 3 have different syntax but the same
semantics

18



Different kinds of logic

* Propositional logic
* Syntax: P v (—Q A R); X, <> (Raining = —Sunny)
* Possible world: {P=true, Q=true, R=false, S=true} or 1101
* Semantics: o A 3 is true in a world iff o is true and [3 is true
(etc.)

* First-order logic
* Syntax: Vx dy P(x, y) A =Q(Joe,f(x)) = f(x)=f(y)
* Possible world: Objects o,, 0,, 05; P holds for <o0,,0,>; Q holds
for <o,>; f(0,)=0,; Joe=0,; etc.
* Semantics: ¢(c) is true in a world if ¢ = 0;and ¢ holds for o;
etc.



Inference: entailment

Satisfaction: If a sentence o is true in model m, we say that m
satisfies o (or m is a model of o..)
* We use the notation M(a) to mean the set of all models of .

Entailment: Refers to a sentence following logically from another

* o |= P (or, a = PB) denotes “a entails f” or “B follows from o”

a |= B iff in every model in which a is true, B is also true

+ o |= B if and only if M(at) € M(B) . A £ X=0

* o is a stronger assertion than 3 Y=0 . .
Example: X =0 | XY =0 .
Y-

X=0 XY=0 21




Inference: entailment

* Example: Models(a) < Models(p)

®
©

* Example: Givena = —=QARASAW,3 =—=Q
* Thena kP
* DoesPBEa?




The Wumpus World

Al = Agent

1,4 2.4 34 24
1 ,3 2,3 3,3 4,3
1,2 2,2 32 22
OK
1,1 2,1 31 41
OK OK
(a)

B = Breeze

G = Glitter, Gold
OK = Safe square
P =Pi

S = Stench
V = Visited
W = Wumpus

B

4 SSenens “Breoze —| MZU
ZBreszs -
1,4 2,4 3 é%;i;é pT |
Yl
2 S T
" = * gl rir |
START
1 2 3 4
1,2 2,2 3,2 4,2
P?
OK
1,1 2,1 A 3,1 po 4.1
v B
OK OK

(b)

23



The Wumpus World

1,4 2,4 3,4 44
13y |23 3,3 43
g (22 3,2 42
S
OK OK
1,1 21 5 (31 5 |41
v V
OK OK

= Agent
B =Breeze
G = Glitter, Gold
OK = Safe square
P =Pit

S = Stench
Y = Visited
W = Wumpus

E——

4 Sienen AT PIT
ZBreszs -
3 é\éﬁiﬁ/ PIT QR
/G B~
1.4 SAFTI b R Tz
1 gzl e |EE
1'3 w! 2.3 3’3 p? START
S G 1 2 3 4
B
1,2 S 2,2 32 4,2
v v
OK OK
1,1 2,1 B 3,1 p! 4.1
V v
OK OK

24



Quiz
You're in the Wumpus World. You enter square (1,1). You feel a
breeze but no stench. What can you conclude?
A. There’s definitely a pit in (1,2)
B. There’s definitely a pit in (2,1)

C. At least one of (1,2) or (2,1) has a pit, but we can’t say
which

D. There are no pits nearby

25



Entailment

* The agent has visited [1, 1] and [2, 1]

* 8 possible models for pits in the neighboring squares
* [a] o, = “No pitin [1, 2]”
* [b] a, = “No pit in [2,2]”




Entailment

* The agent has visited [1, 1] and [2, 1]
* 8 possible models for pits in the neighboring squares
* a,= Nopitin[1,2]”
* a,= Nopitin [2,2]”

KB |= a, KB }q,




Entailment

* If KB is true in the real-world, then any sentence derived
from KB is also true in the real world

Sentences ~ T~~~ * Sentence
I Entails I
. v | W |
Representation g I g I
o | Q |
‘‘‘‘‘‘‘‘‘‘‘‘ = e A
o | o |
World @ @ |
Aspects ofthe ~~— 7 7~ = Aspect of the

real world Follows real world

28



Quiz
1. If a KB entails a sentence a, what must be true?
A. o must be explicitly stored in the KB.

B. o must be true in all models where the KB is true.

C. o can be derived only if we use forward chaining.
D. o is probably true, but not guaranteed.

2. A KB contains the following:

“If it rains, the ground is wet.”
14 . 2
It rains.

Does KB entail “The ground is wet”?

29



Quiz

1. If a KB entails a sentence o, what must hold?
a must be explicitly stored in the KB.

a must be true in all models where the KB is true.
a can be derived only if we use forward chaining.
a is probably true, but not guaranteed.

o0 >

2. KB contains the following;:

“If it rains, the ground is wet”
13 . »
It rains.

Does KB entail “The ground is wet”? Why?

Yes. In every model where both statements in the KB are true, “Wet”
must also be true.

30



Propositional Logic Syntax

* Atomic sentences (Literals): single proposition symbol, e.g.,
True, False, W, ,

* Complex sentences are formed form simpler sentences using
logical connectives

Sentence — AtomicSentence | ComplexSentence
AtomicSentence — True| False| P| Q| R| ...

ComplexSentence — ( Sentence)
- Sentence

Sentence N Sentence

|

|

| Sentence \ Sentence

| Sentence = Sentence
|

Sentence < Sentence

OPERATOR PRECEDENCE : —,A,V,=,& 31



Propositional logic syntax

* Given: a set of proposition symbols {X;, X, ..., X }
* we often add True and False for convenience

X.1s a sentence

NOT: If o is a sentence then —o is a sentence

AND: If oo and 3 are sentences then oo A 3 is a sentence

OR: If oo and [3 are sentences then o v 3 is a sentence

Implies: If oo and [3 are sentences then oo = [3 is a sentence

I[FF: If oo and 3 are sentences then o < [ is a sentence

And there are no other sentences!



Propositional logic semantics

* Let m be a model assigning true or false to {X,, X,, ..., X }
* If oo is a symbol then its truth value is given in m

—o. is true in m iff ais false in m

o A B is true in m iff o is true in m and 3 is true in m

o Vv [ is true in m iff o is true in m or 3 is true in m

* o= [ is true in m iff o is false in m or [ is true in m (i.e., B v
—|OC)

* o< Pistruein miff o = Pistruein mand 3 = o is true in m



P Q —P PANQ PVvQO P =0 P < 0
false false true false false true true
false true true false true true false
frue false false false rrue false false
frue true false true true true true

34




Inference: proofs

* Method 1: model-checking

* Enumerates all possible models and checks for every possible
world: if a (or, KB) is true, make sure that 3 is true too

* M(a) € M(B)
* M(KB) € M(B)

* OK for propositional logic (finitely many worlds); not easy for
first-order logic

* Method 2: theorem-proving
* Search for a sequence of proof steps (applications of inference
rules) leading from o to 3

* E.g., from P A (P = Q), infer Q by Modus Ponens



Inference: proofs

* A proof is a demonstration of entailment between o and 3

* Have a set of formulas and want to check the truth of some
conclusion based on the given formulas

* Sound algorithm: everything it claims to prove is in fact
entailed

* Complete algorithm: everything that is entailed can be
proved



Wumpus World KB

* Partially observable environment

* Symbols
P, is true if there is a pit in |x, ).

W, is true if there is a wumpus in |x,y|, dead or alive.

B, is true if there is a breeze in [x,y)].
Sy is true if there is a stench in [x,y].
L, is true if the agent is in location [x,y].

37



Wumpus World KB

* Initial state R1: —P,,

* Sensor Model - state facts about how percepts arise
* <Percept variable (at t)> <> <some condition on world (at t)>

* R2: B1,1 — (P1,2 \ P2,1)
* R3: Bz,1 — (P1,1 \% Pz,z \% P3,1)
* Note: True in all wumpus worlds

* The breeze percepts for the first two squares visited
° R4:—7B,,
* L,;A Breeze = B,
* R5:B,,
* M(KB) = NR, e KB M(R))

38



—— -

How many possible worlds?

Symbols are B, By 1, Py, Py, Pyyy Poyand Py N2 B8

S ==

7 symbols => 27 = 128 possible worlds (models)
* With just 80 symbols there are 2%° ~ 10%! possible models!

KB is True in 3 of these
And —P1,2 is True in all three

* Propositional entailment is co-NP-complete

* Inference algorithms for propositional logic have exponential
worst case complexity in the size of the input



Inference: Truth table enumeration

Biy By Pii Pl Py P Py R, R; R; Ry Rs KB
false false false false false false false true true true true false false
false false false false false false true true true false true false false
false true false false false false false true true false true true false
false true false false false true  true  true  true  true  true  true
false true false false false false true true true true true  true
false true false false false true  true true  true  true  true  true
false true false false true false false true false false true  true false

true  true true  true  true true  true false true true false true  false

o, = "No pitin [1, 2]”, a, = “No pit in [2,2]” KB |= o; KB |=a, ?




Quiz
1. In the context of propositional logic, what does model
checking mean?

A. Searching for the shortest proof of a sentence.

B. Enumerating all possible truth assignments to see if KB E
oL

C. Using heuristics to guess if a is true.
D. Converting a knowledge base into conjunctive normal form.

2. Consider the knowledge base KB = {P — Q, P}. Prove or
disprove KB E Q by model checking.

41



Quiz

1. In the context of propositional logic, what does model checking mean?
A. Searching for the shortest proof of a sentence.

B. Enumerating all possible truth assignments to see if KB E «.
C. Using heuristics to guess if a is true.

D. Converting a knowledge base into conjunctive normal form.

2. Consider the KB = {P — Q, P}. Prove or disprove KB &= Q by model
checking.

* Possible models are (P,T; QT), (P,T; QF), (P,F; QT), (P,F; Q,F).
* Models satisfying KB are only (P,T; Q,T).

* |n those models, Q is true.

* Therefore, KB E Q.

42



Propositional logic semantics in code

function PL-TRUE?(a.,model) returns true or false
if o is a symbol then return Lookup(c,, model)
if Op(at) = — then return not(PL-TRUE?(Arg1(c),model))
if Op(a) = A then return and(PL-TRUE?(Arg1(o),model),
PL-TRUE?(Arg2(c),model))

etc.

Example: P, A(P,, VP ) > TA (FVvT)=TAT =T



Propositional theorem proving

* Recall: Theorem proving refers to searching for a sequence of
proof steps (i.e., applications of inference rules) leading
from o to 3

* Sound algorithm: everything it derives is in fact entailed

* Complete algorithm: every that is entailed can be derived

48



Some reasoning tasks

* Localization with a map and local sensing:

* Given an initial KB, plus a sequence of percepts and actions, where
am I?

Mapping with a location sensor:

* Given an initial KB, plus a sequence of percepts and actions, what is
the map?

Simultaneous localization and mapping;:
* Given ..., where am | and what is the map?

* Planning:
* Given ..., what action sequence is guaranteed to reach the goal?

ALL OF THESE USE THE SAME KB AND THE SAME ALGORITHM!




Logical equivalences

* If a and B are logically equivalent, oo =03, a =B and B F a

(anp) = (BA«a) commutativity of A
(aVpB) = (fVa) commutativity of V
(aNB)ANy) = (aA(BA7)) associativity of A
((aVvp)Vy) = (aV(BV7y)) associativity of V
—(—a) = a double-negation elimination
(a = B) = (-8 = —a) contraposition
(a = B) = (-aV () implication elimination
(a < B) = (= B)A(B = «)) biconditional elimination
—-(aANB) = (—aV-8) De Morgan
—(aVp) = (naA—-B) De Morgan
(@A (BVY)) = (aAB)V(aAy)) distributivity of A over V
(aV(BAY)) = (aVB)A(aVy)) distributivity of V over A

51



Satisfiability and entailment

* A sentence is satisfiable if it is true in at least one model
* Called the SAT problem

* First NP-Complete problem (Cook-Levin Theorem)
* (Pv—-Q) A (=PVvQ) issatisfiable (P=T,Q =T)
* P A =P is unsatisfiable

* A sentence is a tautology (or valid) if it is true in all models
- Eg,Pv—=P

* o is a tautology if —a is unsatisfiable

* a [ Biff a A =P is unsatisfiable



Satisfiability and entailment

* Suppose we have a hyper-efficient SAT solver (WARNING: NP-
COMIPLETE). How can we use it to test entailment?

© ok
iff oo = [3 is true in all worlds
iff —=(ao = [3) is false in all worlds

iff oo A —f3 is false in all worlds, i.e., unsatisfiable

* So, add the negated conclusion to what you know, test for
(un)satisfiability; also known as reductio ad absurdum

* Is KB u {—p } satisfiable? If not, KB | [3

* Efficient SAT solvers operate on conjunctive normal form (CNF)



Inference rules

* Chain of conclusions

a = o
* Modus ponens (mode that affirms) b,

* Given: /8

* (WumpusAhead A WumpusAlive) = Shoot
* (WumpusAhead A WumpusAlive)

e Then infer: Shoot
al B
Q

e AND-elimination

Both are sound but not complete. Consider{} = P v =P

* Logical equivalence rules

54



Inference example
Starting with KB containing R1 to R5, prove =P, ,

Biconditional elimination to R2:
* R6:(B1,1= (P1,2v P2,1)) A ((P1,2v P2,1) = B1,1).

And-Elimination to Ré6:

A
. R7:((P12v P2,1) = B1,1). aTﬁ
Logical equivalence for contrapositives gives
. R8:(—B1,1= —(P1,2v P2,1)).
Modus Ponens with R8 and the percept R4 (i.e., —B1,1) gives
« R9:7(P1,2v P21). a = P,
Finally, De Morgan’s rule gives the conclusion g

e R10:P1,2 A TP2,1.
Neither [1,2] nor [2,1] contains a pit!

55



Proof by Resolution (Robinson, 1965)

* Completeness depends on adequate inference rules

* Removing bidirectional elimination would cause the previous
inference to fail

* Proof by resolution uses only one inference rule: resolution
* And is complete provided a complete search is used

e Unit resolution: AvB,AvVC
BvC

* Why?



Proof by Resolution (Robinson, 1965)
* Reductio Ad Absurdum — Proof by contradiction

* Resolution uses sentences in CNF and negation of query
* (KB A ) is converted into CNF

* The resolution rule is applied to the resulting clauses
* Each pair containing complementary literals is resolved
* The new clause is added to the set if it is not already present
* Until -
* There are no new clauses that can be added: KB does not
entail o
* Or, two clauses resolve to yield the empty clause: KB |= o



Conjunctive normal form (CNF)

* Every sentence can be expressed as a conjunction of clauses
* Aclause is a disjunction of literals

* Each literal is a symbol or a negated symbol

* Example: (7B, ; VP, VP, )A(TIP, VB )A(TP,; VB )



Conjunctive normal form (CNF)

CNFSentence — Clause; \--- N Clause,,
Clause — Literal; \V---V Literal,,
Fact — Symbol

Literal — Symbol | =Symbol

Symbol — P| Q| R| ...
HornClauseForm —  DefiniteClauseForm | GoalClauseForm

DefiniteClauseForm —  Fact | (Symbol, A\--- A Symbol,) = Symbol

GoalClauseForm —  (Symbol, \--- N\ Symbol;)) = False

Figure 7.12 A grammar for conjunctive normal form, Horn clauses, and definite clauses. A
CNF clause such as =A vV =BV C can be written in definite clause formas AAB = C.



Conjunctive normal form (CNF)

Conversion to CNF of B, ; < (P,, Vv P, )
* Eliminate <, replacing a<=f3 with (a« = B)A(f = ).
° (B1,1:> (P1,2VP2,1))/\((P1,2VP2,1) — B1,1) .

* Eliminate =, replacing o= with —av[3:
¢ (_'BmVP1,2VP2,1)/\(_'(P1,2VP2,1)VB1,1) .

* CNF requires = to appear in literals. Moving = inwards:
* 7(7a) = o (double-negation elimination)
* (anP) = (Tav—p) (De Morgan)
* (avp) = (Tan—p) (De Morgan)



Conjunctive normal form (CNF)

* In the example, we require one application of the last rule:
° (_'B1,1VP1,2VP2,1)/\((_'P1,2/\_'P2,1)VB1,1) .

* Now we have a sentence containing nested A and v operators
applied to literals.

* Apply the distributive law distributing v over A wherever possible:
 (—B1,1vP1,2vP2,1)A(—P1,2 vB1,1)A(—P2,1 vB1,1)



Proof by Resolution Example

The agent returns from [2,1] and goes to [1,2], where it
perceives a stench, but no breeze.

* Additions to KB:

e R11:—/B1,2

+ R12:B1,2 < (P1,1v P2,2v P1,3)
* Inferences:

e R13:—/P2,2

e R14:—P1,3



Proof by Resolution Example

* Biconditional elimination to R3 and Modus Ponens with R5:
R15: P1,1v P2,2v P3,1.

e Unit resolutions:
* The literal —P2,2 resolves with P2,2 to give the resolvent
R16: P1,1v P3,1.
* Similarly, the literal —P1,1 in R1 resolves with P1,1in R16 to
give
R17 : P3,1



Proof by Resolution Example

ﬁPz,l VBl,l ﬁBl,l VP1,2 VP2,1 ﬁPl,z VB1,1 _'Bl,l
ﬁBl,l VP1,2 VBI,I PI,Z VP2,1 Vv ﬁPz,l ﬁBl,l VP2,1 VBl,l Pl,z VPz,l VﬁP1,2 ﬁPZ,l P,

* Resolution is complete for propositional logic

* More powerful than modus ponens

* Exponential time in the worst case




Proof by Resolution (Robinson, 1965)

function PL-RESOLUTION(KB, «) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic
«, the query, a sentence in propositional logic

clauses < the set of clauses in the CNF representation of KB A\ -«
new<+{}
while rrue do
for each pair of clauses C;, C; in clauses do
resolvents <— PL-RESOLVE(C;, C))
if resolvents contains the empty clause then return true
new <—newU resolvents
if new C clauses then return false
clauses < clauses\Unew



Simple theorem proving: Forward chaining

* Forward chaining applies Modus Ponens to generate new facts:
* Given X, A X, A X, =Yand X,, X,,..., X, inferY

n?

* Given L,, A Breeze = B,,, L,,and Breeze, infer B, ,

* Forward chaining keeps applying this rule, adding new facts, until
nothing more can be added

* Requires KB to contain only Horn clauses
* At-most one positive literal

* Runs in linear time using two simple tricks:
* Each symbol X. knows which rules it appears in

* Each rule keeps count of how many of its premises are not yet
satisfied



Simple theorem proving: Forward chaining

Q Queue (or, agenda) = {A, B} initially

P =0 Q
LANM = P P M

BANL = M

AAP = L M 0
AANB = L 7 )

A
B B A




Forward chaining algorithm: Details

function PL-FC-ENTAILS?(KB, q} returns true or false
count < a table, where count[c] is the number of symbols in c’s

premise
inferred < a table, where inferred|s] is initially false for all s
queue < a queue of symbols, initially symbols known to be true in KB

// Some editions use “agenda” to refer to the queue

while queue is not empty do
p < Pop(queue)
if p = g then return true
if inferred[p] = false then
inferred[p]«true
for each clause c in KB where p is in c.premise do

decrement count|c]
if count[c] = 0 then add c.conclusion to queue

return false



Properties of forward chaining

* Data-driven reasoning: reasoning starts with known data

Can be used to arrive at conclusions without specific query

* Theorem: FC is sound and complete for definite-clause KBs

e Soundness of FC follows from soundness of Modus Ponens

* Backward chaining

Starts with the query and works backwards
Useful for goal-directed reasoning
* Where is the Wumpus?

Faster than linear in KB size since only the relevant
sentences are checked



Properties of forward chaining

* Completeness proof:

* FC reaches a fixed point where no new atomic sentences are
derived

* Consider the final set of known-to-be-true symbols as a
model m, other ones false

* Every clause in the original KB is true in m

Proof: Suppose a clause a,A... Aa, = b is false in m
Then a,A... Aa, is true in m and b is false in m
Therefore the algorithm has not reached a fixed point!

* Hence m is a model of KB

* If KB [ q, qis true in every model of KB, including m



Solving SAT Problems

* Problem:
* Is a given propositional formula satisfiable?

* If yes, produce a model.

* Examples:
c Pv-QA(=PVvQ)?Yes, (P=T,Q=T)
* PA—=P?No

e SAT is a kind of CSP where the domain is restricted to T and F

* How to solve SAT problems?
* Truth table enumeration - though complete but not efficient

e How can we make it faster?



Solving SAT Problems

* Better: partial assignment tree search with backtracking
e Av—-B,—-AvB,—-—Av—-=B,AvBvC

* How can we make it even faster?
* CNF + Search + Backtracking + Inference (+ Heuristics)



Efficient SAT solvers

* DPLL (Davis-Putnam-Logemann-Loveland, 1962) algorithm is the core
of modern solvers

* Recursive depth-first search over models with some extras
* Early termination: stop if
* all clauses are satisfied; e.g., (A v B) A (A v —=C) is satisfied by
{A=true}
* any clause is falsified; e.g., (A v B) A (A v —=C) is falsified by
{A=false, B=false}
* Pure literals: if all occurrences of a symbol in as-yet-unsatisfied
clauses have the same sign, give it that value
* E.g., Ais pure and positive in (A v B) A (A v —=C) A (C v —B) so set
it to true



Efficient SAT solvers

* Unit clauses: if a clause is left with a single literal, set
symbol to satisfy clause
* E.g., if A=false, (A v B) A (A v —C) becomes (false v B) A
(false v —C), i.e. (B) A (—C)
* Satisfying the unit clauses often leads to further propagation,
new unit clauses



DPLL algorithm

function DPLL(clauses, symbols, model) returns true or false
if every clause in clauses is true in model then return true
if some clause in clauses is false in model then return false

P, value —FIND-PURE-SYMBOL(symbols, clauses, model)
if P is non-null then return DPLL(clauses, symbols - P, model u {P=value})

P, value «—FIND-UNIT-CLAUSE(clauses, model)
if P is non-null then return DPLL(clauses, symbols - P, model u {P=value})

P < First(symbols); rest « Rest(symbols)
return or(DPLL(clauses, rest, model U {P=true}),
DPLL(clauses, rest, model U {P=false}))



Efficiency

* Naive implementation of DPLL: solves ~100 variables

* Extras:
e Smart variable and value ordering
* Divide and conquer
* Caching unsolvable subcases as extra clauses to avoid redoing them

* Cool indexing and incremental recomputation tricks so that every step
of the DPLL algorithm is efficient (typically O(1))

* Index of clauses in which each variable appears +ve/-ve
* Keep track number of satisfied clauses, update when variables assigned
* Keep track of number of remaining literals in each clause

* Real implementation of DPLL: solves ~100 Million variables



Probability of satisfiability

* The probability of satisfiability of overconstrained instances
(i.e., large clause to symbol ratio) tends to 0
* Solutions are densely distributed in underconstrained ones

* The transition is sharp

1 200001 ppLL ——
1800 {WalkSAT —-¢—-
0.8 - 1600 -
= 1400 -
S 0.6 | 2 1200 -
G £ 1000 -
3 04 4 Z 800 -
~ 600 -
0.2 1 400 A
200 -
I I = = = = 0 - —_— e
o 1 2 3 4 5 6 7 8 o 1 2 3 4 5 6 7 8

Clause/symbol ratio m/n Clause/symbol ratio m/n



SAT solvers in practice

* Circuit verification: does this VLSI circuit compute the right
answer?

* Software verification: does this program compute the right
answer?

* Software synthesis: what program computes the right answer?
* Protocol verification: can this security protocol be broken?

* Protocol synthesis: what protocol is secure for this task?

* Lots of combinatorial problems: what is the solution?

* Planning: how can I kill the wumpus and get the gold?



Summary

* One possible agent architecture: knowledge + inference

* Logics provide a formal way to encode knowledge

* Alogic is defined by: syntax, set of possible worlds, truth
condition

* A simple KB for an agent covers the initial state, sensor
model, and transition model

* Logical inference computes entailment relations among
sentences, enabling a wide range of tasks to be solved



Summary

* Theorem provers apply inference rules to sentences
* Forward chaining applies modus ponens with definite
clauses; linear time

* Resolution is complete for PL but exponential time in the
worst case

* SAT solvers based on DPLL provide incredibly efficient
inference

* Logical agents can do localization, mapping, SLAM, planning
(and many other things) just using one generic inference
algorithm on one knowledge base



* Reading: Chapter 7
* Assignments: WalkSAT, SATPlan, PS 5, logic.ipynb

* Next: First order logic, Chapter 8

82



