Artificial Intelligence

3. Search

Shashi Prabh

School of Engineering and Applied Science
Ahmedabad University

Contents

* Goal: use search to solve problems

* Topics
* Problem-solving agents
* Searching
* Uninformed Search

* |Informed Serach

Problem-Solving Agents

Main idea

* When the current action to take in not immediately obvious and when
environment Is

* fully observable,
* static,

* and discrete,

then the agents can plan ahead by doing a simple search.
* Such an agent is called problem-solving agent.
* Uses atomic representation of states

* Search in deterministic, known and single-agent environments is
straightforward.

Problem-Solving Agent

* Finds a sequence of actions that form a path to the goal state(s)

* Steps

Goal Formulation: limits the action choices
Problem formulation: a description of the states and actions to reach the goal
Search: simulates sequences of actions in its model, produces solution

* In partially observable or nondeterministic environments, the solution would
be a branching strategy.

Execution

* In fully observable, deterministic and known environment, the agent can
ignore the percepts — open loop system

* Otherwise, percepts need to be monitored — closed loop system

Navigation example

Oradea

75

Arad
02

Fagaras

99

118 Vaslui

Rimnicu Vilcea

Timisoara

142
Lugoj

98

. Hirsova
Mehadia Urziceni
86
[~ Bucharest
Drobeta
90
Craiova Eforie

Giurgiu

Figure 3.1 A simplified road map of part of Romania, with road distances in miles.

Defining a search problem - |

1. State Space: set of possible states of the environment
a. The initial state that the agent starts in. For example: Arad

2. A set of one or more goal states

3. The actions available to the agent.
 Given a state s, ACTIONS(s) returns a set of actions that can be executed in s

* We say that each of these actions is applicable in s
* ACTIONS (Arad) = {ToSibiu, ToTimisoara, ToZerind}

4. Transition model: describes what does each action do
 RESULT(s, a) = the state that results from doing action a in state s

* RESULT(Arad, ToZerind) = Zerind .

Defining a search problem - Il

* An action cost function, denoted by ACTION-COST(s, a, s’), gives the
numeric cost of applying action a in state s to reach state s’

* Notation: c(s, a, s") when we are doing math
* Should use a cost function that reflects its own performance measure

* Example: for route-finding agents, the cost of an action might be the length in
miles or it might be the time it takes to complete the action.

* A sequence of actions forms a path, and a solution is a path from the initial
state to a goal state

* An optimal solution has the lowest path cost among all solutions.

Vacuum-World Example

* State space: 8 atomic states
* Agent can be in either of the two cells, and each call can have dirt or not

* Initial state: Any one of the 8 states

* Actions: Suck, MovelLeft, and MoveRight
* In a 2-D multi-cell world Forward, Backward, TurnRight, and TurnLeft.

* Transition model: Suck removes any dirt from a cell, move left/right takes to
the other room (unless it hits a wall, in which case the action has no effect)

* Goal states: The states in which every cell is clean

* Action cost: +1 for each action

* What about 3x3 grid world?

State-Space Graph

* The state space can be represented as a graph in which the vertices are
states and the directed edges between them are actions.

Navigation example

Here the map

is a state-space graph.

Each road indicates two actions, one in each direction.

Arad

118

Oradea

Neamt

Fagaras

99

Vaslui

Rimnicu Vilcea

Timisoara

142

Lugoj

Hirsova

Urziceni

Mehadia

86

Bucharest

75

Drobeta

90
Giurgiu

Eforie

Craiova

10

Quiz

What are the essential components of a search problem?

Quiz

What are the essential components of a search problem?

1.

2
3
4.
5

Initial state (Need not specify the state space explicitly)
Goal state(s) / Goal test

Actions

Transition model

Action cost

Formulate a maze problem on a grid

=
et | ey
e
g el ey

IIIIEIhIL

Quiz

Formulate a maze problem on a grid

> W N

Initial State: The entrance coordinates (x, y).

Goal Test: Is the current state the exit coordinates?

Actions: GoNorth, GoSouth, GoEast, GoWest.

L]]
e
[|
§
[
[|

' B

[|
[
g
[|
[|

Ilrllnll-ll-

o
=
H N
o
.
.
55 mamm
S m
llll-ll_ll-

Transition Model: RESULT((x, y), GoNorth) returns (x, y+1) if there is no

wall etc.

Path Cost: Each step costs 1.

Search Algorithms

* Once a problem is formulated, the agent uses a search algorithm to find a

solution
* A search algorithm takes a search problem as input and returns a solution or

indicates failure

* The search algorithms are evaluated on four criteria:
1. Completeness: Does it always find a solution when there is one?

* And correctly reports failure when there is none?
2. Cost optimality: Does it always find the best or lowest cost solution?

3. Time complexity: How long does it take to find a solution?

* Measured in the number of nodes generated (states and actions considered).

4. Space complexity: How much memory does it need to perform the search?

15

Search Tree

* A search tree is a data structure created by a search algorithm to explore a
problem's state space.

* It represents the set of paths that the agent has considered, starting from
the initial state which forms the root of the tree.

* Node corresponds to a state in the state space.
* Edge corresponds to an action.

* Search tree represents explored paths starting from the initial state (root)
leading to the goal.

* Agent builds the search tree as it navigates the state space.

A state may appear multiple times in the search tree.

16

Search Tree

Oradea

Neamt

Arad

Fagaras

99
118

Vaslui

Rimnicu Vilcea

Timisoara

142

111 Lugoj Pitesti
70
X Hirsova
Mehadia Urziceni
86
5 Bucharest
Drobeta

90

Craiova Giurgiu Eforie

e The search tree is infinite
* State space size is only 20

Partial Search Trees

Zelmd D
-
AN
SN
7 \\
\
- \
-~ Ay
,,_.-:: ,:x._k
’.\ Arad) ()mdea
i eSS s S st G S e I St s o
R s
P BN ~ e AN

Search Tree

* Frontier (green) separates interior (purple) from exterior (grey)
* A frontier node is expanded till goal is reached

* Search algorithm: which frontier node to expand next?

» O
o—0o—0 o—o—90
o—o—0 o—o—@ ®

o HI

18

Search Tree

We will superimpose a search tree over the state-space graph, forming various
paths from the initial state, trying to find a path to a goal state

Partial Search Trees

Best-First Search

* Evaluation function for each node f(n)
* Different f(n) result in different search algorithmes...

* f(n) can change with time

* Qut of all nodes in the frontier, select the node with the smallest f(n)

* A node may be added multiple times to the frontier if it is reached by lower
cost path

20

Breadth-First Search
* BFS: f(n) = depth of node n

* BFS is complete, but may not be optimal if cost varies
* Time and space complexity are O(b9), b is the branching factor and d depth.

* Not good...

* At 1 KB per node, the memory needed to search till depth 10 and branching
factor 10 is 10 TB

>® &

Dijkstra’s Algorithm

* Uniform-cost search
* Expand the node with the least cost first

* Complete and optimal

C*
* Time and space complexity: O(b1 +Le)
* Can be worse than BFS

Sibiu Fagaras

Rimnicu Vilcea

Pitesti

Bucharest

28

Depth-First Search

f(n) = - (depth of node n)
Pre-order DFS

Complete if state space is
* Tree or DAG

* Else incomplete
Not optimal

Smaller memory requirement
* O(bm), m is the max depth

Time complexity is O(b™)

p@E () J K L M N O

PO J K L M N O

30

>

Improvements

* Depth-limited search
* Set the maximum depth limit and do DFS
* E.g., set depth = 19 for the Romania map navigation problem

* Neither complete nor optimal

* lterative deepening search
* Set the depth limit as 0, 1, 2, 3, ... and do depth-limited search
* Most nodes are at the bottom level
e Combines BFS and DFS

* Memory requirements of DFS O(bd), is complete, but not optimal in general

* optimal if action costs are all the same

31

limit: 0

limut: 1

limit: 2

limit: 3

32

Bidirectional Search

* Simultaneous search from the initial and goal states
* Why?

e hd2 4 pd/2 yg pd

* Can use BFS or some other search algorithm

* Keep track of two sets of frontiers and two sets of reached states
* Opposite parent-child relationships
* Solution when the two frontiers meet

* If BFS: O(b?¥?) time and space complexity

33

Quiz

1. Which search algorithm is guaranteed to find the shallowest solution first, if one exists?
A) Depth-First Search
B) Uniform Cost Search
C) Breadth-First Search

D) Iterative Deepening

2. What is the primary drawback of Breadth-First Search?
A) It cannot guarantee finding a goal
B) It uses a lot of memory
C) It always gets stuck in loops
D) It doesn't work on graphs

3. Why does Uniform Cost Search produces optimal solution?
A) It always visits the most promising-looking node first
B) It avoids cycles by using a visited list
C) It expands nodes in order of lowest path cost
D) It only works when all edge costs are the same

Quiz

1. Which search algorithm is guaranteed to find the shallowest solution first, if one exists?
A) Depth-First Search
B) Uniform Cost Search
C) Breadth-First Search

D) Iterative Deepening

2. What is the primary drawback of Breadth-First Search?
A) It cannot guarantee finding a goal
B) It uses a lot of memory
C) It always gets stuck in loops
D) It doesn't work on graphs

3. Why does Uniform Cost Search produces optimal solution?
A) It always visits the most promising-looking node first
B) It avoids cycles by using a visited list
C) It expands nodes in order of lowest path cost
D) It only works when all edge costs are the same

Informed Search

Informed Search

* Search process uses domain specific hints about goals

* Hints are given by heuristic function h(n) where
* h(n) = estimated cost of the cheapest path from n to goal

* Study of informed search = study of heuristic functions

Arad 366 Mehadia 241
Bucharest 0 Neamt 234
Craiova 160 Oradea 380
Drobeta 242 Pitesti 100
Eforie 161 Rimnicu Vilcea 193
Fagaras 176 Sibiu 253
Giurgiu 77 Timisoara 329
Hirsova 151 Urziceni 80
Iasi 226 Vaslui 199

Lugoj 244 Zerind 374

Greedy Best First Search

* Expand the node with the smallest h(n) first
* O(|V|) time and space complexity

Oradea

Arad

Craiova
92 Drobeta
Eforie
Vaslui Fagaras
Giurgiu
Hirsova
Iasi
Lugoj

Arad

Fagaras

99

118

Rimnicu Vilcea

Timisoara

142
Pitesti

Lugoj

Hirsova

Mehadia Urziceni

75 86

Drobeta

Bucharest

90

Craiova Giurgiu Eforie

Bucharest

366

160
242
161
176

77
151
226
244

Mehadia
Neamt

Oradea

Pitesti

Rimnicu Vilcea
Sibiu
Timisoara
Urziceni

Vaslui

Zerind

39

241
234
380
100
193
233
329

80
199
374

(b) After expanding Arad

233 329 374

(c) After expanding Sibiu

(d) After expanding Fagaras

Arad
Bucharest
Craiova
Drobeta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj

366

160
242
161
176

77
151
226
244

Mehadia
Neamt

Oradea

Pitesti

Rimnicu Vilcea
Sibiu
Timisoara
Urziceni

Vaslui

Zerind

4V

241
234
380
100
193
253
329

80
199
374

A* Search

* Numerous applications
* h(n) = estimated cost of the cheapest path from n to goal

* g(n) = actual cost from start state to n

* A" uses f(n) = g(n) + h(n) as the estimated cost from start to goal via n

https://www.redblobgames.com/pathfinding/a-star/introduction.html

41

A" Search

(a) The initial state

366=0+366

(b) After expanding Arad

393=140+253 447=118+329 449=75+374

(c) After expanding Sibiu

449=75+374

646=280+366 415=239+176 671=291+380 413=220+193

d) After expanding Rimnicu Vilcea
(d) p g

449=75+374

526=366+160 417=317+100 553=300+253

118

Oradea

Timisoara

111

Drobeta

Sibiu

Lugoj

Mehadia

09 Fagaras

Rimnicu Vilcea

Pitesti

Neamt

"

Bucharest

90

Arad
Bucharest
Craiova
Drobeta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj

Craiova Giurgiu

366 Mehadia 241
0 Neamt 234
160 Oradea 380
242 Pitesti 100
161 Rimnicu Vilcea 103
176 Sibiu 253
77 Timisoara 329
151 Urziceni 80
226 Vaslui 199
244 Zerind 374

A" Search

(a) The initial state

366=0+366

(e) After expanding Fagaras

(b) After expanding Arad

imisoara

447=118+329 449=75+374

393=140+253 447=118+329 449=75+374
(c) After expanding Sibiu
591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

447=118+329 449=75+374

(f) After expanding Pitesti Arad D

646=280+366 415=239+176 671=291+380 413=220+193

CSibin > Cimisoars CZerind

(d) After expanding Rimnicu Vilcea 447=118+329 449=75+374
Carnd > (Fagaras> COradea >
646=280+366 671=291+380 '
449=75+374
591=338+253 450=450+0 526=366+160 553=300+253

T R T R T

526=366+160 417=317+100 553=300+253 418=418+0 615=455+160 607=414+193

Figure 3.18 Stages in an A* search for Bucharest. Nodes are labeled with f = g+ h. The h
values are the straight-line distances to Bucharest taken from Figure 3.16.

43

A* Search

* Heuristic estimates must be optimistic or realistic
* Estimates < Actual costs

* A" heuristic is called admissible if it never overestimates the cost to a goal
* 0 < h(n) < h(n), where h(n) is the actual cost

* A counterexample

44

A" Search Properties

* Complete
* Optimal if heuristic is admissible

* Proof by contradiction
* The cost of A* solution C > C where C is the optimal cost.

* Let n be a node which is on the path to optimal solution but not in A solution.
Therefore, f(n) = C > C which can’t be true.

k"ﬁ

> C" (otherwise n would have been expanded)
g(n)+h(n) (by definition)
¢"(n)+h(n) (because n is on an optimal path)
g*(n)+h*(n) (because of admissibility, h(n) < h*(n))
C* (by definition, C* = g*(n) + h*(n))

k"}

k"ﬁ k"ﬁ
N N e
S S S =SS
~— O N S
| |

VANRVAN

k"ﬁ

45

Consistent heuristic

* A heuristic is consistent if it obeys triangle
inequality
* h(n)<c(n,a, n’)+ h(n’)

* Going via n’ should not reduce the cost

* Every consistent heuristic is admissible but not vice-
versa

* Stronger condition than consistency
 With a consistent heuristic, the first time we reach a
state, it will be on an optimal path

* If C is the optimal cost, A won’t expand any node
with f(n) > C

46

A Search Contours

* A expands lowest f-cost node at the frontier
* Contours have bias towards the goal

Weighted A" - Satisficing Search

* A" expands too may nodes

e Satisficing: accept suboptimal but “good enough” solutions

* Detour index: multiplier to straight line distance to account for road
curvatures

* Weighted A" search: f(n) = g(n) + W X h(n), W > 1

2

* “Somewhat greedy best-first search

48

Weighted A* Search

A* search:
Uniform-cost search:

Greedy best-first search:

Weighted A* search:

(W=1)
(W =0)
(W = o)
(1 <W < o)

49

Improvements to A* Search
* A" is memory hungry

* [terative deepening A" search (IDA")
* Cutoff is f-cost (g+h) instead of depth

* Increase the cutoff by the smallest f-cost of the node beyond the search
contour

* Number of iterations is bounded by C if f-cost is an integer

* Recursive best-first search (RBFS)

* f-limit keeps track of the f-value of the best alternative path from any
ancestor of the current node

* If the recursion exceeds this limit, the search unwinds

50

RBFS

* Frequent switches

* Increases near the goal

* O(d) space complexity

Zerind

Arad

118

Timisoara

Sibiu

99 Fagaras

Rimnicu Vilcea

211

Pitesti

97

Arad
Bucharest
Craiova
Drobeta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj

366

160
242
161
176

77
151
226
244

Mehadia
Neamt

Oradea

Pitesti

Rimnicu Vilcea
Sibiu
Timisoara
Urziceni

Vaslui

Zerind

241
234
380
100
193
253
329

80
199
374

(a) After expanding Arad, Sibiu,
and Rimnicu Vilcea

526 417 553

(b) After unwinding back to Sibiu
and expanding Fagaras

149

(c) After switching back to Rimnicu Vilcea [=]

and expanding Pitesti C_Arad D 366
447
Csibiu D, Ciomisours) Cerind

447 449

646 K 450

iy Qe o
526 417 553

<
418 615

607

Creating admissible heuristic
* Much of the hard work

* Solve a relaxed version of the problem, use pattern databases, use
precomputed landmark solutions, learn (what to look for)

* Example: 8-Puzzle
 91/2 = 181,400 reachable states

e Good heuristics?

Start State Goal State

52

Creating good heuristic

* Heuristic choices for 8-Puzzle
* H,: No. of misplaced tiles
* H,: Sum of Manhattan distances to the correct position
* Here H, dominates H,, i.e., H, > H,

* A with H, will expand all the nodes that A with H, does and possibly some
more

* The effect of using a heuristic in A* search
is a reduced effective depth of the search

compared to that of the uniform search
(Korf & Reid, 1998)

e O(b¥4%) vs O(bY)

Start State Goal State

H1=8,H2=18

53

Dominating heuristic is more efficient

d

6

8
10
12
14
16
18
20
22
24
26
28

Search Cost (nodes generated)

BFS

128
368
1033
2672
6783
17270
41558
91493
175921
290082
395355
463234

A*(hy)

24

48

116
279
678
1683
4102
9905
22955
53039
110372
202565

A*(hy)

Effective Branching Factor

BFS

A*(hy)

A*(h)

54

Generate heuristic from relaxed problems

* The state-space graph of the relaxed problem is a supergraph of the original
problem state-space graph

* Relaxation results in extra edges added to the graph

* The cost of an admissible solution to a relaxed problem becomes less.

* Hence, the solution of relaxed problem is an admissible heuristic to the
original problem

* Heuristic cost needs to be generated fast

* Generating heuristic costs can be automated

* Absolver (Prieditis, 1993) generated heuristic was better than known ones for
8-Puzzle and could generate for Rubik’s cube

* Can combine admissible heuristics: h(n) = max (h,(n), ..., h,(n))

55

Generate heuristic from subproblems

* Cost of the optimal solution of a subproblem is a lower bound on the cost of
the complete problem

* Store the exact solution cost of every subproblem in a pattern database

Example: pattern for 1-2-3-4
Can combine the heuristic cost for multiple patterns (take max)
More accurate than Manhattan distance

Large speedups in practice

Start State Goal State

Quiz
1. What evaluation function does A" use to choose which node to expand next?
A f(n) = g(n)
B. f(n) = h(n)
C. f(n)=g(n) + h(n)
D. f(n) = max(g(n), h(n))

2. What property must a heuristic satisfy to guarantee A" finds an optimal path?
A. Heuristic must be admissible

B. Heuristic must be consistent
C. Heuristic must be admissible and consistent
D. Heuristic must be consistent but not admissible

3. What is an admissible heuristic?

One that always overestimates the cost to the goal
One that never overestimates the cost to the goal
One that equals the exact cost of the goal

One that always satisfies triangle inequality

O 0O®>

Quiz
1. What evaluation function does A" use to choose which node to expand next?
A f(n) = g(n)
B. f(n) = h(n)
C. f(n)=g(n) + h(n)
D. f(n) = max(g(n), h(n))

2. What property must a heuristic satisfy to guarantee A" finds an optimal path?
A. Heuristic must be admissible

B. Heuristic must be consistent
C. Heuristic must be admissible and consistent
D. Heuristic must be consistent but not admissible

3. What is an admissible heuristic?

One that always overestimates the cost to the goal
One that never overestimates the cost to the goal
One that equals the exact cost of the goal

One that always satisfies triangle inequality

00w

Quiz
4. Which statement about IDA” is correct?
A. IDA” uses breadth-first search
B. IDA™ uses simple depth cut-offs only
C. IDA" uses an f(n) = g(n) + h(n) threshold in iterative deepening

D. IDA" stores all visited nodes in memory

5. Why is IDA* more memory-efficient than A*?
A. It only stores the heuristic values
B. It uses breadth-first search
C. It only stores nodes along the current path
D.

It compresses the search tree

Quiz
4. Which statement about IDA” is correct?
A. IDA” uses breadth-first search
B. IDA™ uses simple depth cut-offs only
C. IDA”" uses an f(n) = g(n) + h(n) threshold in iterative deepening

D. IDA" stores all visited nodes in memory

5. Why is IDA* more memory-efficient than A*?
A. It only stores the heuristic values
B. It uses breadth-first search
C. It only stores nodes along the current path
D.

It compresses the search tree

Summary

* Problem-solving agents determine sequences of actions in a search problem
defined on atomic states leading to goal states

* A search problem has five components: initial state, goal test, action,
transition model, and path cost function

* Search methods are evaluated based on completeness, time complexity,
space complexity, and optimality

e Uninformed search methods

* Breadth-First Search (BFS), Uniform-Cost Search (UCS), Depth-First Search
(DFS), Depth-Limited Search, Iterative Deepening Search (IDS), and
Bidirectional Search

Summary

* Informed search methods use heuristic function to estimate cost to the goal

* Greedy Best-First Search uses f(n) = h(n)

* Its search is biased towards the goal but lacks optimality

* A" Search uses actual past cost g(n) with estimated cost h(n)
* Uses f(n) = g(n) + h(n) to decide which node to expand next
* With an admissible or consistent heuristic, A" is both complete and optimal
* The efficiency of A" is optimal — no other algorithm is guaranteed to expand

fewer nodes

* Weighted A" search
* f(n)=g(n)+W X h(n), W=>1(W is a measure of suboptimality)

* Reading: Chapter 3

* Assignments: PS 2, problem solving agent programming exercise

* Next: CSP, Chapter 6

63

