

Artificial Intelligence

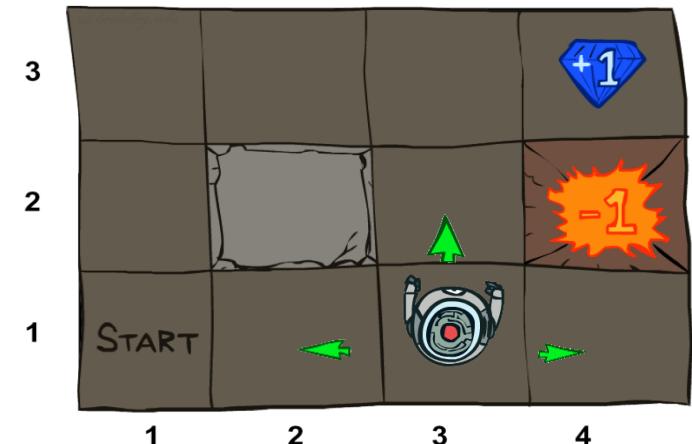
22. Reinforcement Learning

Shashi Prabh

School of Engineering and Applied Science
Ahmedabad University

Recap: Markov Decision Process (MDP)

- An MDP is defined by:
 - A set of states $s \in S$
 - A set of actions $a \in A$
 - A transition model $T(s, a, s')$
 - Probability that a from s leads to s' , i.e., $P(s'|s, a)$
 - A reward function $R(s, a, s')$ for each transition
 - A start state
 - Possibly a terminal state (or absorbing state)
 - Utility function which is additive (discounted) rewards
- MDPs are fully observable but probabilistic search problems

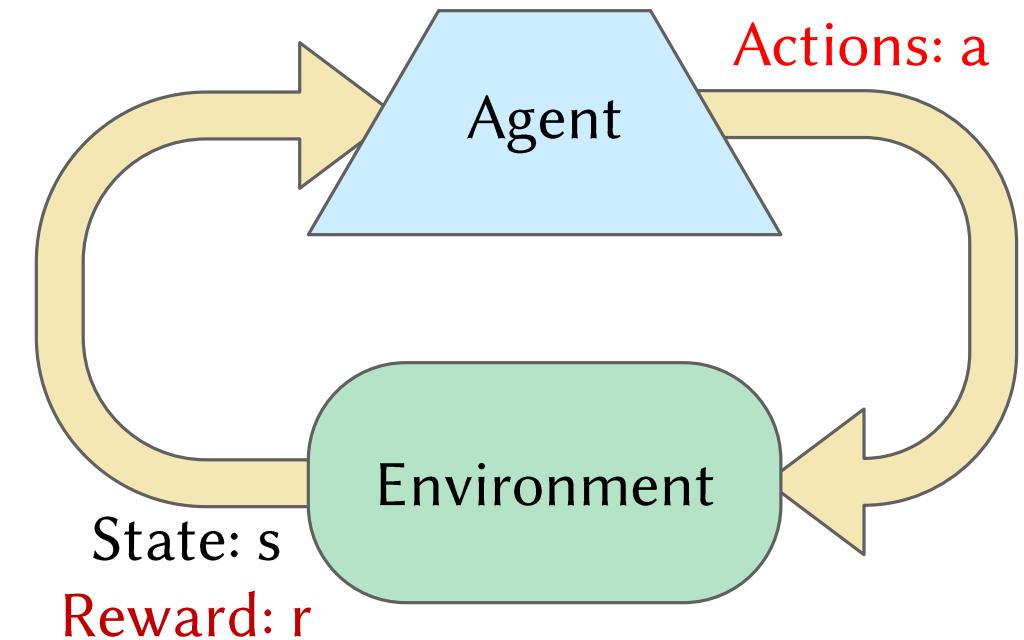


Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model $T(s,a,s')$
 - A reward function $R(s,a,s')$
- Still looking for a policy $\pi(s)$
- New twist: **don't know T or R**
 - That is, we don't know which states are good or what the actions do
 - Must actually try actions and states out to learn

Reinforcement Learning Loop

- Basic idea:
 - Receive feedback in the form of **rewards**
 - Agent's utility is defined by the reward function
 - Must (learn to) act so as to **maximize expected rewards**
 - All learning is based on observed samples of outcomes!

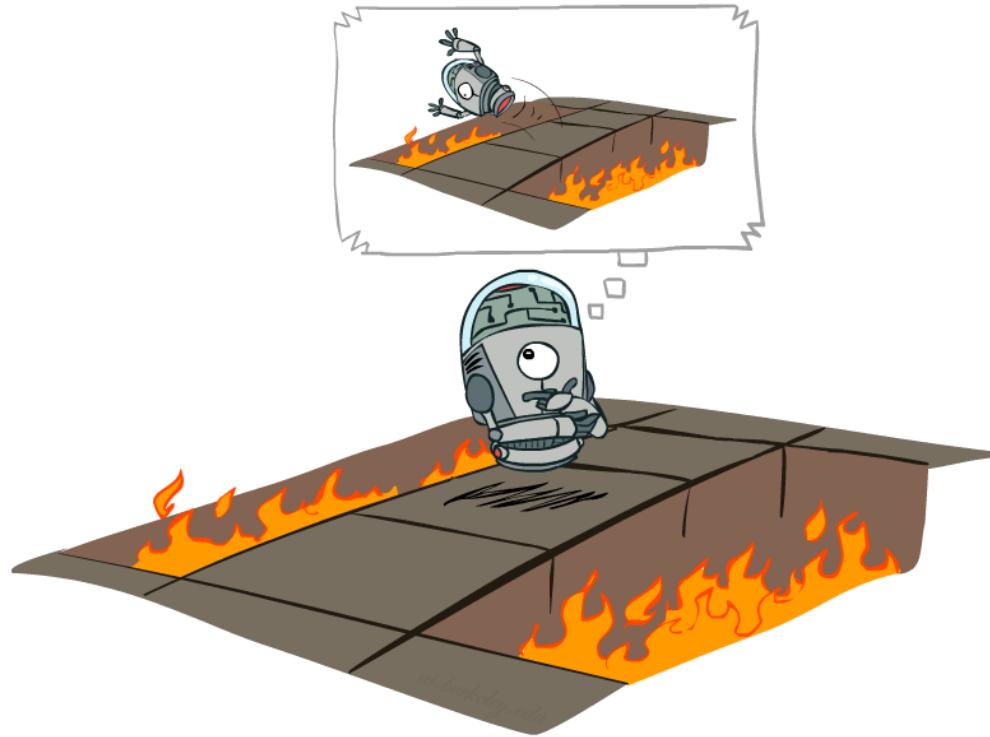


Reinforcement learning

Basic ideas:

- **Exploration**: you have to **try unknown actions** to get information
- **Exploitation**: eventually, you have to use what you know
- **Sampling**: you may need to repeat many times to get good estimates
- **Generalization**: what you learn in one state may apply to others too

Offline (MDPs) vs. Online (RL)



Offline Solution

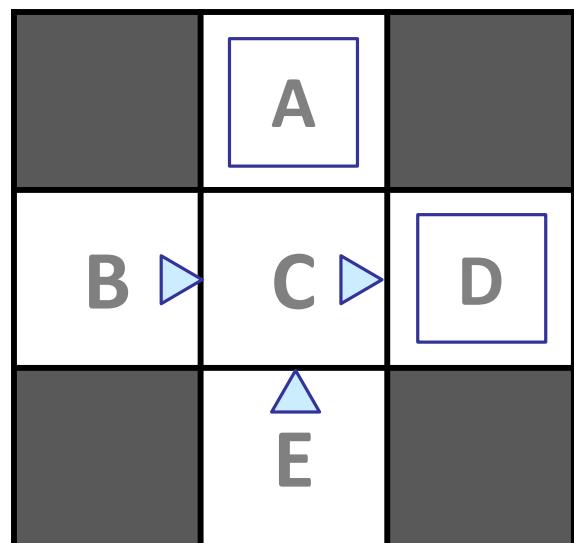
Online Learning

Model-Based Learning

- Model-Based Idea:
 - Learn an approximate model based on experiences
 - Solve for values as if the learned model were correct
- Step 1: Learn empirical MDP model
 - Count outcomes s' for each s, a
 - Normalize to give an estimate of $\hat{T}(s, a, s')$
 - Discover each $\hat{R}(s, a, s')$ when we experience (s, a, s')
- Step 2: Solve the learned MDP
 - For example, use value iteration, as before

Example: Model-Based Learning

Input Policy π



Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1
C, east, D, -1
D, exit, x, +10

Episode 2

B, east, C, -1
C, east, D, -1
D, exit, x, +10

Episode 3

E, north, C, -1
C, east, D, -1
D, exit, x, +10

Episode 4

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Learned Model

$\hat{T}(s, a, s')$

$T(B, \text{east}, C) = 1.00$
 $T(C, \text{east}, D) = 0.75$
 $T(C, \text{east}, A) = 0.25$
...

$\hat{R}(s, a, s')$

$R(B, \text{east}, C) = -1$
 $R(C, \text{east}, D) = -1$
 $R(D, \text{exit}, x) = +10$
...

Pros and cons

- Pro:
 - Makes efficient use of experiences
- Cons:
 - May not scale to large state spaces
 - Learns model one state-action pair at a time (but this is fixable)
 - Cannot solve MDP for very large $|S|$

Analogy: Expected Age

Goal: Compute expected age of students

Known $P(A)$

$$E[A] = \sum_a P(a) \cdot a = 0.35 \times 20 + \dots$$

Without $P(A)$, instead collect samples $[a_1, a_2, \dots, a_N]$

Unknown $P(A)$: “Model Based”

Why does this work? Because eventually you learn the right model.

$$\hat{P}(a) = \frac{\text{num}(a)}{N}$$

$$E[A] \approx \sum_a \hat{P}(a) \cdot a$$

Unknown $P(A)$: “Model Free”

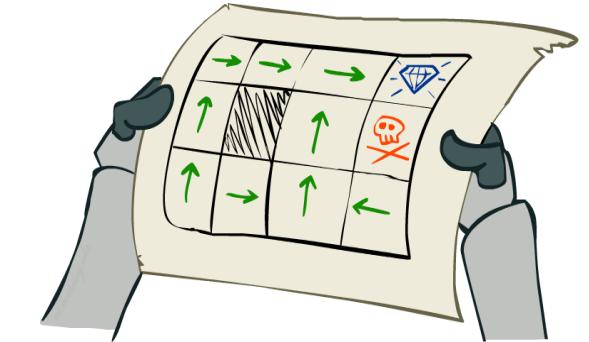
$$E[A] \approx \frac{1}{N} \sum_i a_i$$

Why does this work? Because samples appear with the right frequencies.

Model-Free Learning

Passive Reinforcement Learning

- Simplified task: policy evaluation
 - Input: a fixed policy $\pi(s)$
 - You don't know the transitions $T(s,a,s')$
 - You don't know the rewards $R(s,a,s')$
 - Goal: learn the state values
- In this case:
 - Learner is “along for the ride”
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - This is NOT offline planning! You actually take actions in the world.

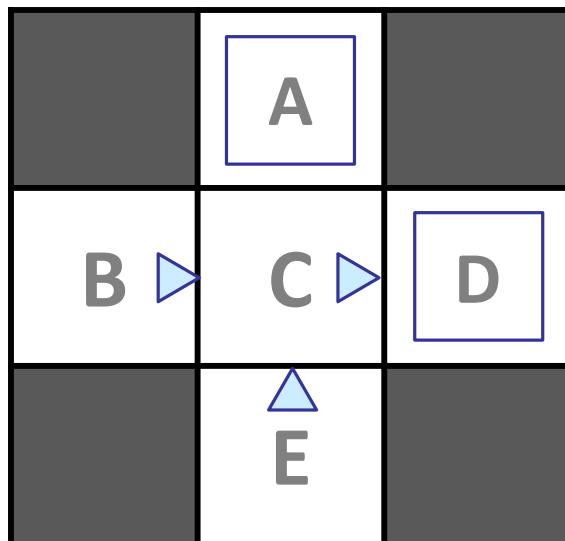


Direct Evaluation

- Goal: Compute values for each state under π
- Idea: Average together observed sample values
 - Act according to π
 - Every time you visit a state, write down what the sum of discounted rewards turned out to be
 - Average those samples
- This is called direct evaluation

Example: Direct Evaluation

Input Policy π



Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1
C, east, D, -1
D, exit, x, +10

Episode 2

B, east, C, -1
C, east, D, -1
D, exit, x, +10

Episode 3

E, north, C, -1
C, east, D, -1
D, exit, x, +10

Episode 4

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Output Values

		-10
	A	
+8	+4	+10
B	C	D
		-2
	E	

If B and E both go to C under this policy, how can their values be different?

Problems with Direct Evaluation

- What's good about direct evaluation?
 - It's easy to understand
 - It doesn't require any knowledge of T , R
 - It eventually computes the correct average values, using just sample transitions
- What's bad about it?
 - It wastes information about state connections
 - Each state must be learned separately
 - So, it takes a long time to learn

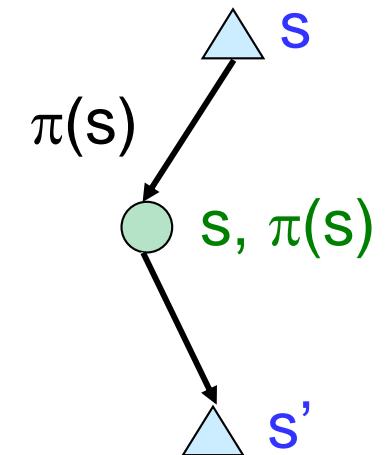
Output Values

		-10 A	
+8 B		+4 C	+10 D
			-2 E

If B and E both go to C under this policy, how can their values be different?

Temporal Difference Learning

- Big idea: learn from every experience!
 - Update $V(s)$ each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often
- Temporal difference learning of values
 - Policy still fixed, still doing evaluation!
 - Move values toward value of whatever successor occurs: running average

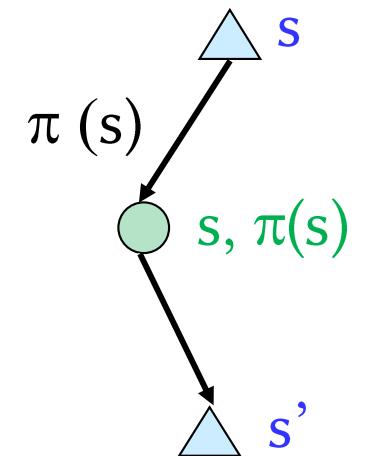


Temporal Difference Learning

Sample of $V(s)$: $sample = R(s, \pi(s), s') + \gamma V^\pi(s')$

Update to $V(s)$: $V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + (\alpha)sample$

Same update: $V^\pi(s) \leftarrow V^\pi(s) + \alpha(sample - V^\pi(s))$



Exponential Moving Average

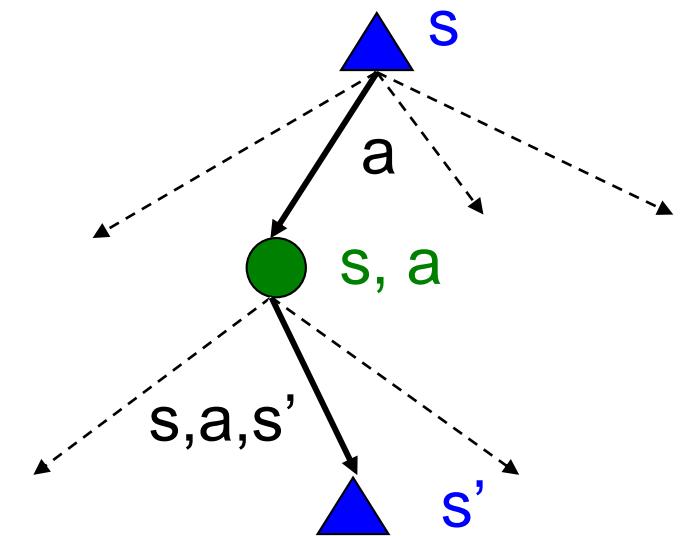
- Exponential moving average
 - The running interpolation update: $\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n$
 - Makes recent samples more important
 - Forgets about the past (distant past values were wrong anyway)
- Decreasing learning rate (alpha) can give converging averages

Problems with TD Value Learning

- TD value learning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages
- However, turning values into a new policy is not possible
 - Values only tell you the expected future reward of a state, not the value of taking a specific *action* within that state
- Idea: learn Q-values, not values
 - Makes action selection model-free too!

$$\pi(s) = \arg \max_a Q(s, a)$$

$$Q(s, a) = \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V(s')]$$



Recap: Q-Value Iteration

- Value iteration: find successive (depth-limited) values

- Start with $V_0(s) = 0$, which we know is right

- Given V_k , calculate the depth $k+1$ values for all states:

$$V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- But Q-values are more useful, so compute them instead

- Start with $Q_0(s, a) = 0$

- Given Q_k , calculate the depth $k+1$ q-values for all q-states:

$$Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]$$

Q-Learning

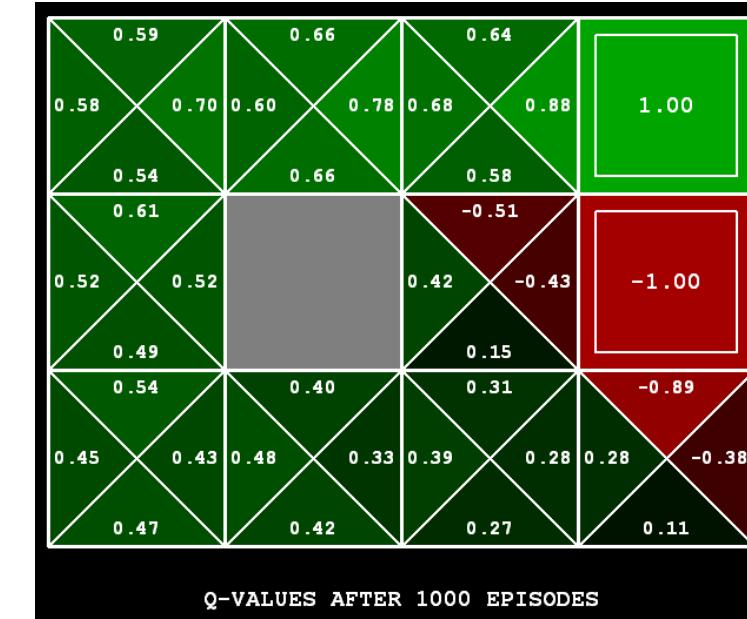
- Q-Learning: sample-based Q-value iteration

$$Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]$$

- Learn $Q(s, a)$ values as you go

- Receive a sample (s, a, s', r)
- Consider your old estimate: $Q(s, a)$
- Consider your new sample estimate:

$$\text{sample} = R(s, a, s') + \gamma \max_{a'} Q(s', a') \quad \text{No longer policy evaluation!}$$



- Incorporate the new estimate into a running average:

$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) [\text{sample}]$$

Active Reinforcement Learning

- Passive reinforcement learning:
 - A passive learning agent has a fixed policy that determines its behavior
- Active reinforcement learning:
 - An active learning agent gets to decide what actions to take

Q-Learning: Explore and Exploit

- Full reinforcement learning: optimal policies (like value iteration)
 - You don't know the transitions $T(s,a,s')$
 - You don't know the rewards $R(s,a,s')$
 - You choose the actions now
 - Goal: learn the optimal policy / values
- In this case:
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - This is NOT offline planning! You actually take actions in the world and find out what happens



Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you're acting suboptimally!
 - This is called **off-policy learning**
- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - But not decrease it too quickly
 - Basically, in the limit, it doesn't matter how you select actions (!)

Quiz

- Which of the following best characterizes RL?
 - A. Learning from labelled examples provided by a teacher
 - B. Learning an explicit model of the environment before acting
 - C. Learning through trial and error by interacting with the environment and receiving rewards
 - D. Learning by memorizing optimal policies from a dataset

Quiz

- Which of the following best characterizes RL?
 - A. Learning from labelled examples provided by a teacher
 - B. Learning an explicit model of the environment before acting
 - C. Learning through trial and error by interacting with the environment and receiving rewards
 - D. Learning by memorizing optimal policies from a dataset

- In model-free RL methods such as Q-learning
 - A. The agent must know $P(s'|s, a)$ before learning begins.
 - B. The agent learns directly from experience without an explicit model of transitions or rewards.
 - C. The agent uses a known model to simulate rollouts.
 - D. The agent uses logical inference instead of sampling.

- In model-free RL methods such as Q-learning
 - A. The agent must know $P(s'|s, a)$ before learning begins.
 - B. The agent learns directly from experience without an explicit model of transitions or rewards.**
 - C. The agent uses a known model to simulate rollouts.
 - D. The agent uses logical inference instead of sampling.

- Which equation correctly represents the Q-learning update?
 - $Q(s, a) \leftarrow R(s, a)$
 - $Q(s, a) \leftarrow Q(s, a) + \alpha [R + \gamma \max_{a'} Q(s', a') - Q(s, a)]$
 - $V(s) = \max_a Q(s, a)$
 - $Q(s, a) = \alpha R(s, a) + (1 - \alpha) Q(s, a)$

- Which equation correctly represents the Q-learning update?
 - $Q(s, a) \leftarrow R(s, a)$
 - $Q(s, a) \leftarrow Q(s, a) + \alpha [R + \gamma \max_{a'} Q(s', a') - Q(s, a)]$
 - $V(s) = \max_a Q(s, a)$
 - $Q(s, a) = \alpha R(s, a) + (1 - \alpha) Q(s, a)$

- Why is the exploration-exploitation trade-off fundamental in reinforcement learning?
 - A. Because agents must randomly switch policies during training
 - B. Because exploration increases rewards in deterministic environments
 - C. Because exploitation is only useful after convergence
 - D. Because the agent must balance learning new information with using what it already knows to maximize reward
- Why is reinforcement learning central to today's AI breakthroughs (e.g., AlphaGo, robotics, ChatGPT fine-tuning)?
 - A. It formalizes how agents can learn sequential behaviors to maximize cumulative reward through experience.
 - B. It provides the theoretical basis for reasoning with logical rules.
 - C. It replaces deep learning entirely.
 - D. It ensures perfect optimality in stochastic environments.

- Why is the exploration-exploitation trade-off fundamental in reinforcement learning?
 - Because agents must randomly switch policies during training
 - Because exploration increases rewards in deterministic environments
 - Because exploitation is only useful after convergence
 - Because the agent must balance learning new information with using what it already knows to maximize reward
- Why is reinforcement learning central to today's AI breakthroughs (e.g., AlphaGo, robotics, ChatGPT fine-tuning)?
 - It formalizes how agents can learn sequential behaviors to maximize cumulative reward through experience.
 - It provides the theoretical basis for reasoning with logical rules.
 - It replaces deep learning entirely.
 - It ensures perfect optimality in stochastic environments.

Summary

- In RL, agents interact with the environment via state, action, reward, next state loop
 - Goal: maximize expected cumulative reward
- Model-free learning involves estimating $Q(s, a)$ directly from experience
- Temporal-Difference (TD) learning updates current estimates using future predictions
- Exploration-exploitation trade-off balances learning new strategies vs. using known good ones