Artificial Intelligence

22. Reinforcement Learning

Shashi Prabh

School of Engineering and Applied Science
Ahmedabad University

Recap: Markov Decision Process (MDP)

= An MDP is defined by:
m A set of statess € S

= A set of actions a € A

" A transition model T(s, a, s’)

= Probability that a from s leads to s’ i.e., P (s’| s, a)

" A reward function R(s, a, s’) for each transition
= A start state
" Possibly a terminal state (or absorbing state)

= Utility function which is additive (discounted) rewards

"= MDPs are fully observable but probabilistic search problems

[Demo — gridworld]

Reinforcement Learning

* Still assume a Markov decision process (MDP):
* Aset of statess € S
* A set of actions (per state) A
* A model T(s,a,s’)

* A reward function R(s,a,s’)

* Still looking for a policy m(s)

* New twist: don’t know T or R
* That is, we don’t know which states are good or what the actions do

* Must actually try actions and states out to learn

Reinforcement Learning Loop

 Basic idea:
e Receive feedback in the form of rewards

* Agent’s utility is defined by the reward function
* Must (learn to) act so as to maximize expected rewards
* All learning is based on observed samples of outcomes!

\ Actions: a
Agent

e

Environment

State: s
Reward: r

Reinforcement learning

Basic ideas:

o Exploration: you have to try unknown actions to get information
o Exploitation: eventually, you have to use what you know

o Sampling: you may need to repeat many times to get good estimates

o Generalization: what you learn in one state may apply to others too

20

Offline (MDPs) vs. Online (RL)

»

Offline Solution Online Learning

Model-Based Learning x_.
\ Z

* Model-Based ldea:
* Learn an approximate model based on experiences

* Solve for values as if the learned model were correct

* Step 1: Learn empirical MDP model
* Count outcomes s’ for each s, a . @
* Normalize to give an estimate of 7(s,a,s)

* Discover each R(s,a,s") when we experience (s, a, s’)

* Step 2: Solve the learned MDP

* For example, use value iteration, as before

Example: Model-Based Learning

Input Policy &

Observed Episodes (Training)

Episode 1

-

Assume: y = 1

B, east, C, -1
C, east, D, -1

9 D, exit, x,+10/

Episode 2

-
B, east, C, -1

C, east, D, -1

Episode 3

-

~
E, north, C, -1

C, east, D, -1

\D, exit, X, +10/

9 D, exit, x,+10/

Episode 4

4 I
E, north, C, -1
C, east, A, -1

Learned Model

T(s,a,s)

/T(B, east, C) = 1.00

T(C, east, D) = 0.75
T(C, east, A) = 0.25

\A, exit, x,—10j

-

\

J

R(s,a,s")

4 R(B, east, C) = -1
R(C, east, D) = -1
R(D, exit, x) = +10

N

\

J

Pros and cons

* Pro:
* Makes efficient use of experiences

* Cons:
* May not scale to large state spaces

* Learns model one state-action pair at a time (but this is

fixable)
* Cannot solve MDP for very large |S|

Analogy: Expected Age

Goal: Compute expected age of students

4 Known P(A) A

E[A]=) P(a)-a =035x20+...

Without P(A), instead collect samples [a,, a,, ... ay]

Unknown P(A): “Model Based” Unknown P(A): “Model Free”
Why does this P(a) _ num(a) Why does this
work? Because N E[A] ~ 1 Za' work? Because
eventually you X TN & samples appear
learn the right E[A] ~ Z P(a)-a ‘ with the right

model. a / k frequencies.

Model-Free Learning

Passive Reinforcement Learning

* Simplified task: policy evaluation
* Input: a fixed policy 7(s)
* You don’t know the transitions T(s,a,s’)
* You don’t know the rewards R(s,a,s’)

e Goal: learn the state values

* In this case:
* Learner is “along for the ride”

* No choice about what actions to take
* Just execute the policy and learn from experience

—

* This is NOT offline planning! You actually take actions in the
world.

Direct Evaluation

* Goal: Compute values for each state under «

* Idea: Average together observed sample values
* Act according to

* Every time you visit a state, write down what the sum of
discounted rewards turned out to be

* Average those samples

* This is called direct evaluation

Example: Direct Evaluation

Input Policy =

Observed Episodes (Training)

Episode 1

Assume:y=1

-

4 B, east, C, -1

C, east, D, -1
D, exit, x, +10

~

J

Episode 3

N

/E, north, C, -1

C, east,
D, exit,

D, -1
X, +10

~

Episode 2

J

-

4 B, east, C, -1

C, east, D, -1
D, exit, x, +10

~

J

Episode 4

N

4 E, north, C, -1

C, east,
A, exit,

A -1
X, -10

~

Output Values

J

[f B and E both go to C
under this policy, how can
their values be different?

Problems with Direct Evaluation

* What’s good about direct evaluation?
* It’s easy to understand

* It doesn’t require any knowledge of T, R

Output Values

* It eventually computes the correct average
values, using just sample transitions

* What bad about it?

* |t wastes information about state connections

* Each state must be learned separately If B and E both go to C

under this policy, how can

* So, it takes a long time to learn their values be different?

Temporal Difference Learning

* Big idea: learn from every experience!
* Update V(s) each time we experience a transition

(s,a,s’,r)
* Likely outcomes s’ will contribute updates more

often S

. . n(s)
* Temporal difference learning of values
S, 1i(S)

* Policy still fixed, still doing evaluation!
* Move values toward value of whatever successor AS

OCCUrs: running average

Temporal Difference Learning

Sample of V(s): sample = R(s,m(s),s") + V7™ (s")
Update to V(s): V" (s) «+ (1 —a)V"(s) + (a)sample

Same update: V7" (s) + V" (s) + a(sample — V" (s))

T (s)

s, T(s)

Exponential Moving Average

* Exponential moving average
* The running interpolation update: 2, = (1 —«) - Zp—1 + @ -z
* Makes recent samples more important
* Forgets about the past (distant past values were wrong
anyway)

* Decreasing learning rate (alpha) can give converging averages

Problems with TD Value Learning

* TD value leaning is a model-free way to do policy evaluation,
mimicking Bellman updates with running sample averages

* However, turning values into a new policy is not possible

* Values only tell you the expected future reward of a state,
not the value of taking a specific action within that state

* |dea: learn Q-values, not values
* Makes action selection model-free too!

m(s) = argmaxQ(s,a)

Qs.0) = ¥ 75,0) [RCor,) 41V ()]

Recap: Q-Value Iteration

o Value iteration: find successive (depth-limited) values
o Start with V(s) = 0, which we know is right
o Given V,, calculate the depth k+1 values for all states:

/ / /
Vit1(s) & max3 T (s,a,s) R(s,a,s) + 7 Vi(s)]
S
o But Q-values are more useful, so compute them instead

o Start with Qy(s,a) = 0
o Given Q, calculate the depth k+1 g-values for all g-states:

Qt1(s,a) = S T(s,a,8) | R(s,a,8) +7 maxQu(s',a)

Q-Learning
* Q-Learning: sample-based Q-value iteration
Qut1(s,a) = ST (s,a,8) |R(s,a,8) +9 maxQu(s',a')

* Learn Q(s,a) values as you go
* Receive a sample (s,a,s’,r)
* Consider your old estimate: Q(s.a)

* Consider your new sample estimate:

sample = R(s, a, S’) + ~ mz,ax Q(s', a’) No longer policy

a evaluation!

* Incorporate the new estimate into a running average:
Q(s,a) — (1 —a)Q(s,a) + (@) [sample]

Active Reinforcement Learning

* Passive reinforcement learning;:

* A passive learning agent has a fixed policy that determines
its behavior

* Active reinforcement learning:

* An active learning agent gets to decide what actions to take

Q-Learning: Explore and Exploit

* Full reinforcement learning: optimal policies (like value iteration)
* You don’t know the transitions T(s,a,s’)
* You don’t know the rewards R(s,a,s’)
* You choose the actions now
* Goal: learn the optimal policy / values

* |n this case:
* Learner makes choices!

* Fundamental tradeoff: exploration vs. exploitation

* This is NOT offline planning! You actually take actions in the
world and find out what happens

Q-Learning Properties

* Amazing result: Q-learning converges to optimal policy --
even if you're acting suboptimally!
* This is called off-policy learning

* Caveats:

You have to explore enough

You have to eventually make the learning rate small enough
* But not decrease it too quickly

* Basically, in the limit, it doesn’t matter how you select
actions (!)

Frozen-Lake Demo

Quiz

* Which of the following best characterizes RL?
A. Learning from labelled examples provided by a teacher
B. Learning an explicit model of the environment before acting
C. Learning through trial and error by interacting with the

environment and receiving rewards
D. Learning by memorizing optimal policies from a dataset

Quiz

* Which of the following best characterizes RL?
A. Learning from labelled examples provided by a teacher
B. Learning an explicit model of the environment before acting
C. Learning through trial and error by interacting with the
environment and receiving rewards
D. Learning by memorizing optimal policies from a dataset

* In model-free RL methods such as Q-learning
A. The agent must know P(s’ls, a) before learning begins.
B. The agent learns directly from experience without an explicit

model of transitions or rewards.
C. The agent uses a known model to simulate rollouts.

D. The agent uses logical inference instead of sampling.

* In model-free RL methods such as Q-learning
A. The agent must know P(s’ls, a) before learning begins.
B. The agent learns directly from experience without an explicit

model of transitions or rewards.
C. The agent uses a known model to simulate rollouts.

D. The agent uses logical inference instead of sampling.

* Which equation correctly represents the Q-learning update?
A. Q(s,a)«—R(s,a)
B. Q(s,a)«—Q(s,a)+a[R+ y max_Q(s’,a")-Q(s,a)]
C. V(s)=max,Q(s,a)
D. Q(s,a)=aR(s,a)+(1-a)Q(s,a)

* Which equation correctly represents the Q-learning update?
A. Q(s,a)«—R(s,a)
B. Q(s,a)«—Q(s,a)+a[R+ y max_Q(s’,a’)-Q(s,a)]
C. V(s)=max,Q(s,a)
D. Q(s,a)=aR(s,a)+(1-a)Q(s,a)

* Why is the exploration—exploitation trade-off fundamental in
reinforcement learning?

A. Because agents must randomly switch policies during training

B. Because exploration increases rewards in deterministic environments
C. Because exploitation is only useful after convergence

D. Because the agent must balance learning new information with using
what it already knows to maximize reward

* Why is reinforcement learning central to today’s Al breakthroughs (e.g.,
AlphaGo, robotics, ChatGPT fine-tuning)?

A. It formalizes how agents can learn sequential behaviors to maximize
cumulative reward through experience.

B. It provides the theoretical basis for reasoning with logical rules.
C. It replaces deep learning entirely.

D. It ensures perfect optimality in stochastic environments.

* Why is the exploration—exploitation trade-off fundamental in
reinforcement learning?

A. Because agents must randomly switch policies during training
B. Because exploration increases rewards in deterministic environments
C. Because exploitation is only useful after convergence

D. Because the agent must balance learning new information with using
what it already knows to maximize reward

* Why is reinforcement learning central to today’s Al breakthroughs (e.g.,
AlphaGo, robotics, ChatGPT fine-tuning)?

A. It formalizes how agents can learn sequential behaviors to maximize
cumulative reward through experience.

B. It provides the theoretical basis for reasoning with logical rules.
C. It replaces deep learning entirely.

D. It ensures perfect optimality in stochastic environments.

Summary

* In RL, agents interact with the environment via state, action,
reward, next state loop
* Goal: maximize expected cumulative reward

* Model-free learning involves estimating Q(s, a) directly from
experience

* Temporal-Difference (TD) learning updates current estimates
using future predictions

* Exploration—exploitation trade-off balances learning new
strategies vs. using known good ones

