

Artificial Intelligence

17. Markov Decision Processes

Shashi Prabh

School of Engineering and Applied Science
Ahmedabad University

Recap: Decision Networks

- Decision network = Bayes net + Actions + Utilities

■ **Action nodes** (rectangles, cannot have parents, will have value fixed by algorithm)

■ **Utility nodes** (diamond, depends on action and chance nodes)

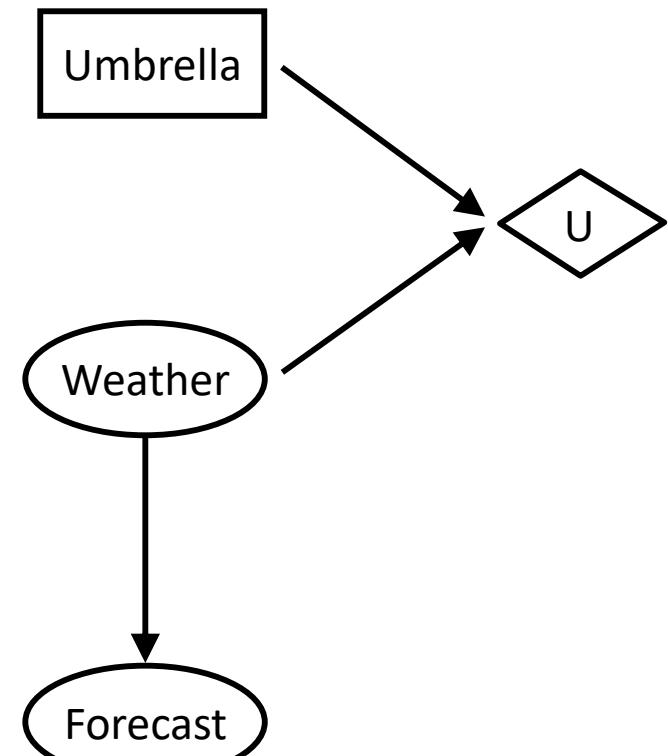
- Decision network represents a decision problem, containing all the information needed to for the agent to decide

- What action to take given evidence e

- Decision algorithm

- Value of information

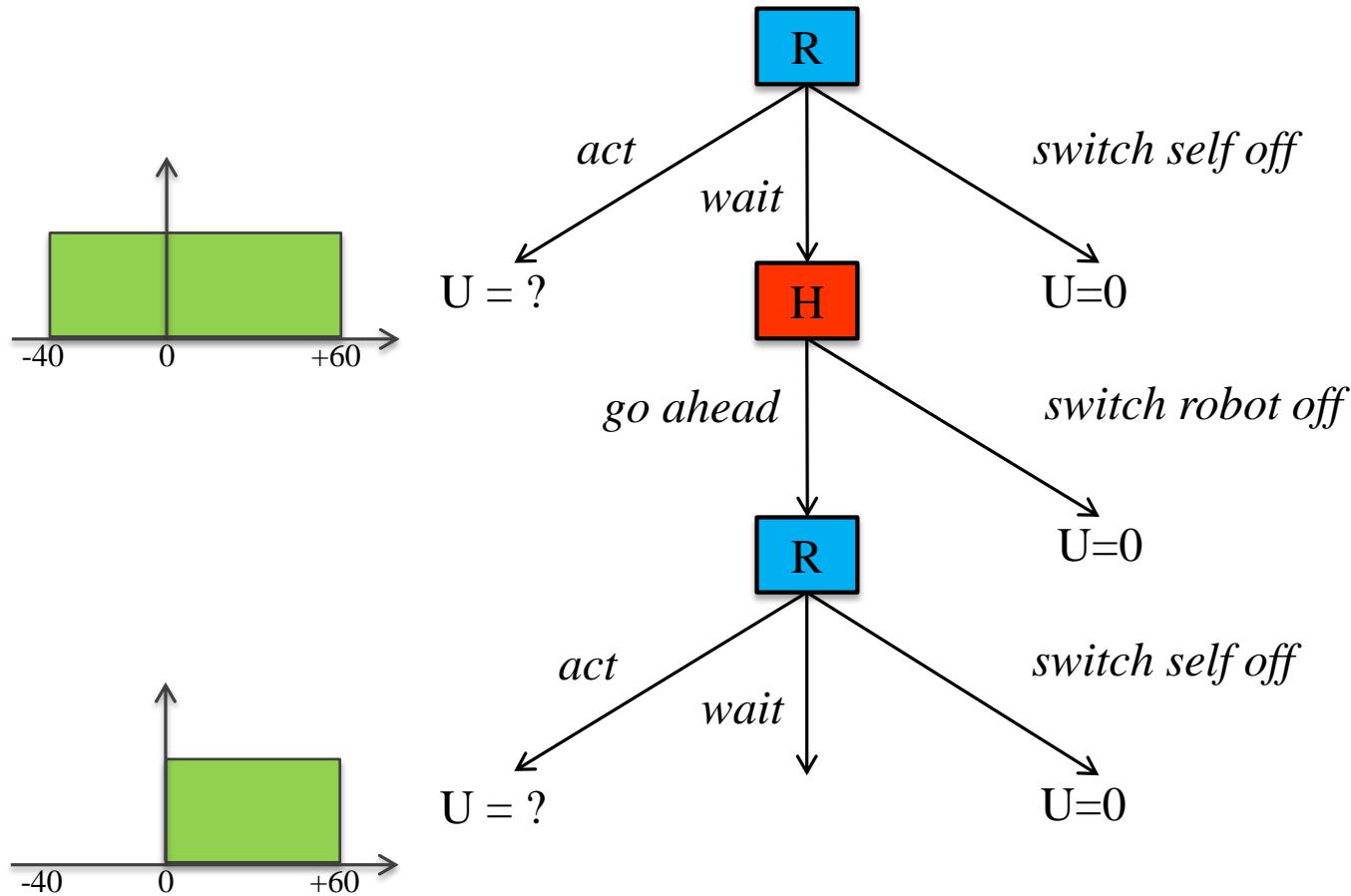
- $$VPI(E_i | e) = \left[\sum_{e_i} P(e_i | e) \max_a EU(a|e_i, e) \right] - \max_a EU(a|e)$$



Decisions with unknown preferences

- In reality the assumption that we can write down our exact preferences for the machine to optimize is false
- A machine optimizing the wrong preferences causes problems
- A machine that is explicitly uncertain about the human's preferences will defer to the human (e.g., allow itself to be switched off)

Off-switch problem

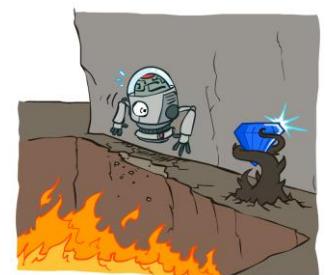


$$EU(\text{act}) = +10$$

$$EU(\text{wait}) = (0.4 * 0) + (0.6 * 30) = +18$$

Sequential decisions under uncertainty

- So far, decision problem was one-shot
 - Concerning only one action
- **Sequential decision problem:** agent's utility depends on a sequence of actions



Markov Decision Process (MDP)

- Environment history: $[s_0, a_0, s_1, a_1, \dots, s_t]$
- **Markov** means that given the present state, the future and the past are independent : First Order Markov Chain
- For Markov decision processes, **Markov** means action outcomes depend only on the current state

$$\begin{aligned} & P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots, S_0 = s_0) \\ & = \\ & P(S_{t+1} = s' | S_t = s_t, A_t = a_t) \end{aligned}$$

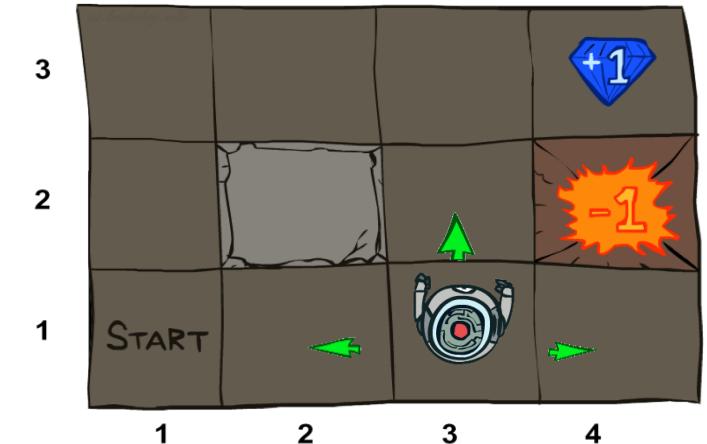
- This is just like search, where the successor function could only depend on the current state (not the history)

Andrey Markov
(1856-1922)

Markov Decision Process (MDP)

- An MDP is defined by:

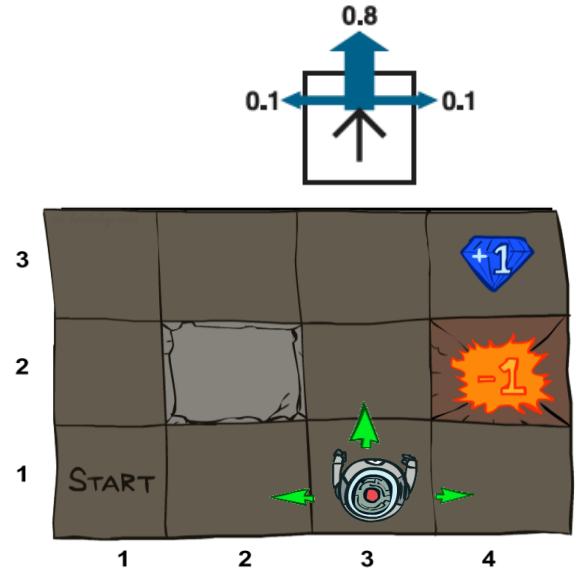
- A set of states $s \in S$
- A set of actions $a \in A$
- A transition model $T(s, a, s')$
 - Probability that a from s leads to s' , i.e., $P(s'|s, a)$
- A reward function $R(s, a, s')$ for each transition
- A start state
- Possibly a terminal state (or absorbing state)
- Utility function which is additive (discounted) rewards



- MDPs are fully observable but probabilistic search problems

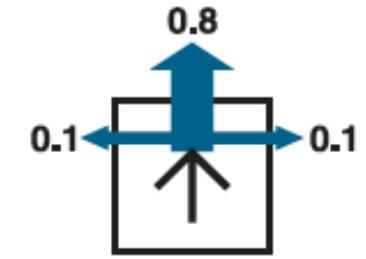
Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- **Noisy movement:** actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put



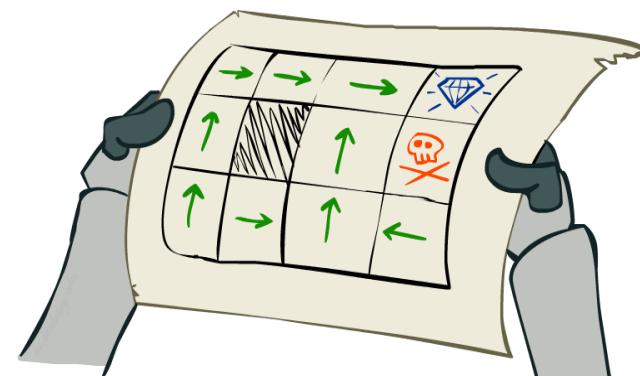
Example: Grid World

- The agent receives rewards each time step
 - Small “living” reward r each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: **maximize sum of rewards**

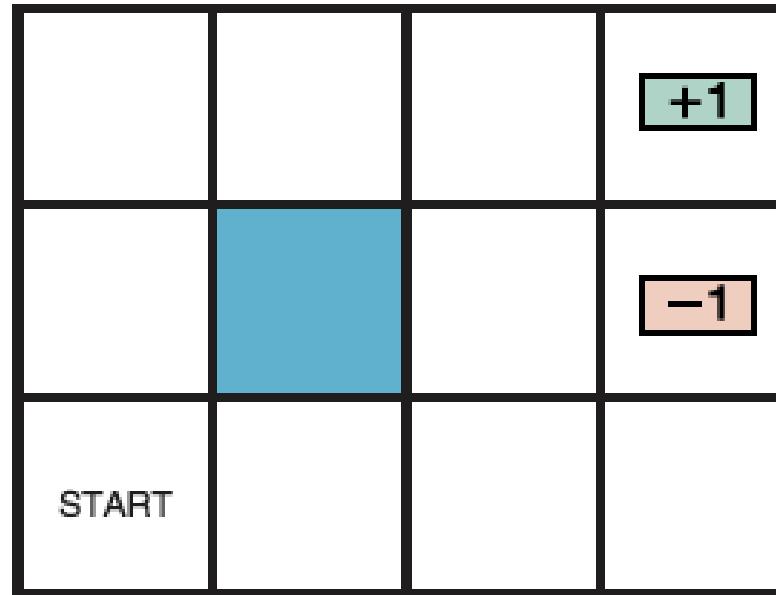


Policies

- A policy π gives an action for each state, $\pi: S \rightarrow A$
- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal policy $\pi^*: S \rightarrow A$
 - An optimal policy maximizes expected utility
 - An explicit policy defines a reflex agent

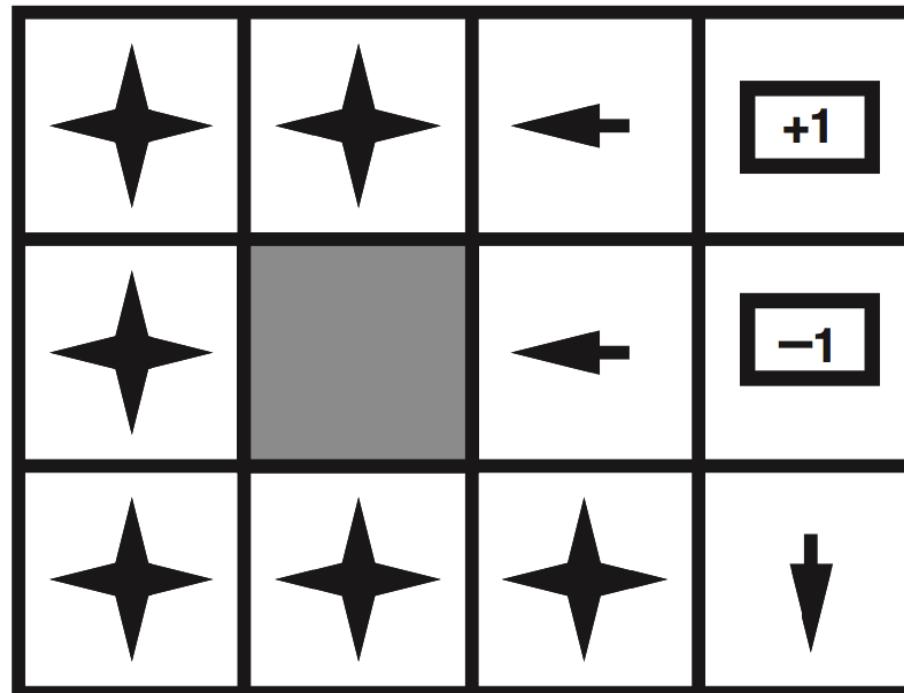


Optimal policy for $r > 0$



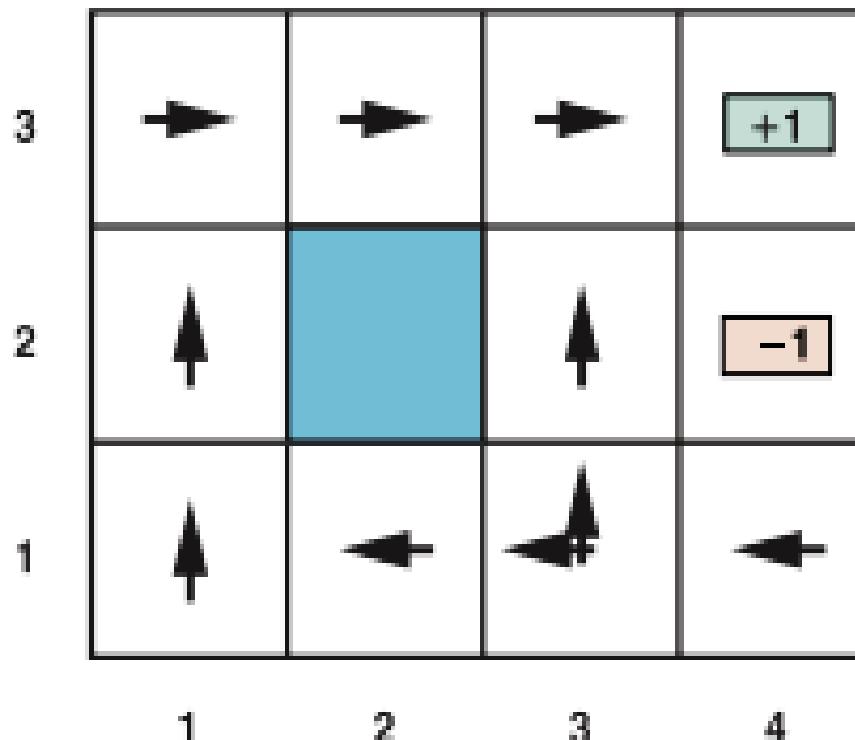
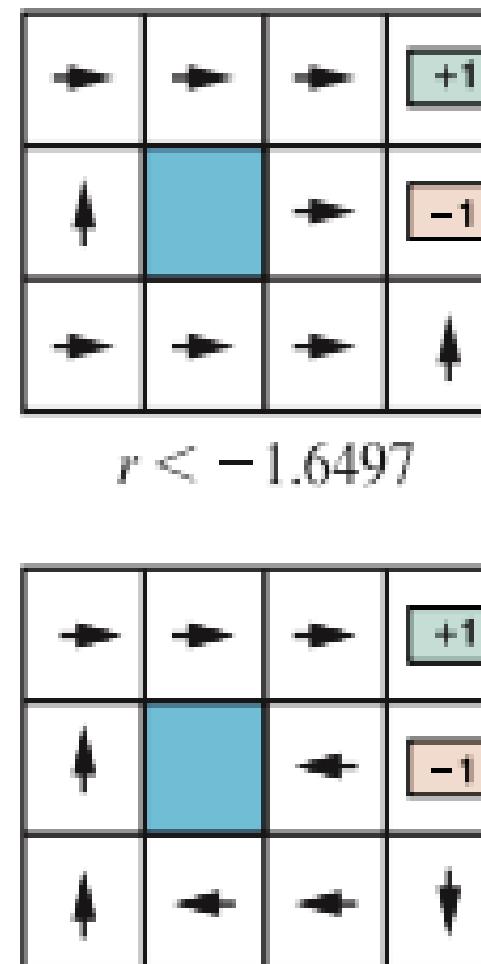
$$r > 0$$

Optimal policy for $r > 0$

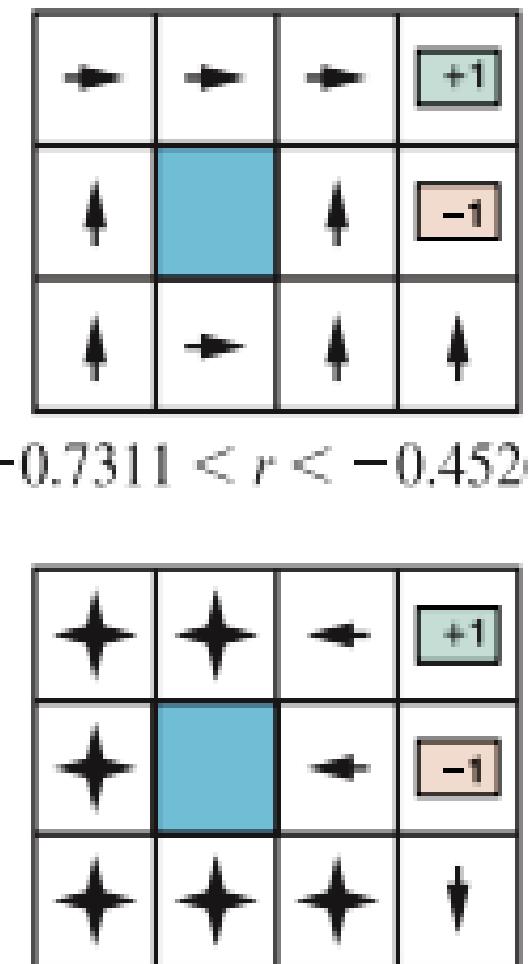


$$r > 0$$

Sample Optimal Policies



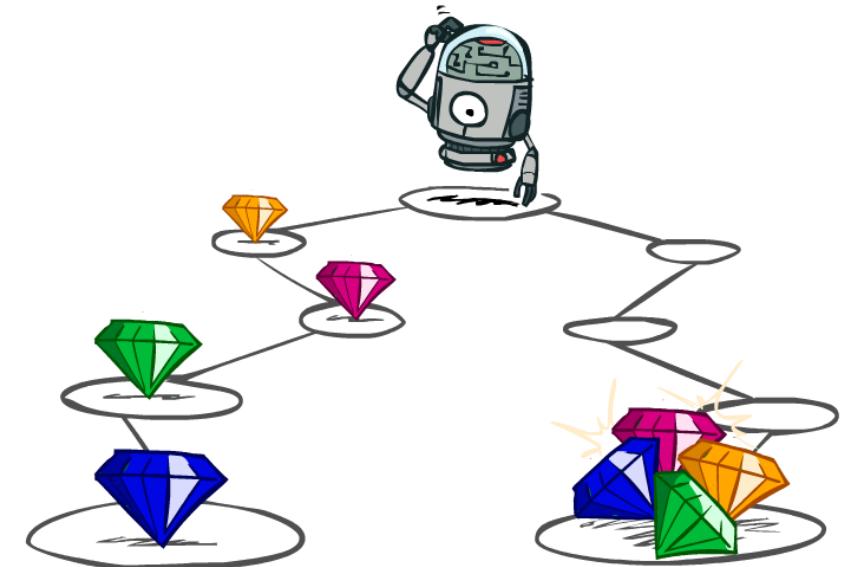
$$-0.0274 < r < 0$$



$$r > 0$$

Utilities of Sequences

- What preferences should an agent have over reward sequences?
- More or less? $[1, 2, 2]$ or $[2, 3, 4]$
- Now or later? $[0, 0, 1]$ or $[1, 0, 0]$



Discounting

- Discounting conveniently solves the problem of infinite reward streams!
 - Geometric series: $1 + \gamma + \gamma^2 + \dots = 1/(1 - \gamma)$
 - Assume rewards bounded by $\pm R_{\max}$
 - Then $r_0 + \gamma r_1 + \gamma^2 r_2 + \dots$ is bounded by $\pm R_{\max}/(1 - \gamma)$

$$U_h([s_0, a_0, s_1, a_1, s_2, \dots]) = R(s_0, a_0, s_1) + \gamma R(s_1, a_1, s_2) + \gamma^2 R(s_2, a_2, s_3) + \dots$$

Worth r now

Worth γr next step

Worth $\gamma^2 r$ in two steps

Quiz: Discounting

- Given:

10				1
----	--	--	--	---

a b c d e

- Actions:** East, West, and Exit (only available in exit states **a, e**)
- Transitions:** deterministic

- Quiz 1: For $\gamma = 1$, what is the optimal policy?

10				1
----	--	--	--	---

- Quiz 2: For $\gamma = 0.1$, what is the optimal policy?

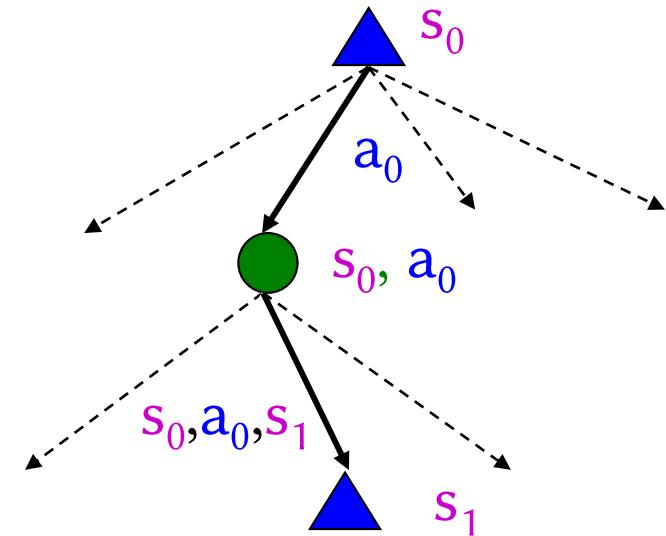
10				1
----	--	--	--	---

- Quiz 3: For which γ are West and East equally good when in state **d**?

The utility of a policy

- Executing a policy π from any state s_0 generates a sequence $s_0, \pi(s_0), s_1, \pi(s_1), s_2, \dots$
- This corresponds to a sequence of rewards $R(s_0, \pi(s_0), s_1), R(s_1, \pi(s_1), s_2), \dots$
- This reward sequence happens with probability $P(s_1 | s_0, \pi(s_0)) \times P(s_2 | s_1, \pi(s_1)) \times \dots$
- The value (expected utility) of π in s_0 is written $U^\pi(s_0)$
 - It's the sum over all possible state sequences of (discounted sum of rewards) \times (probability of state sequence)

$$U^\pi(s_0) = E \left[\sum_{t=0}^{\infty} \gamma^t R(S_t, \pi(S_t), S_{t+1}) \right]$$



Optimal Quantities

- The optimal policy:

$\pi^*(s)$ = optimal action from state s

Gives highest $U^\pi(s)$ for any π

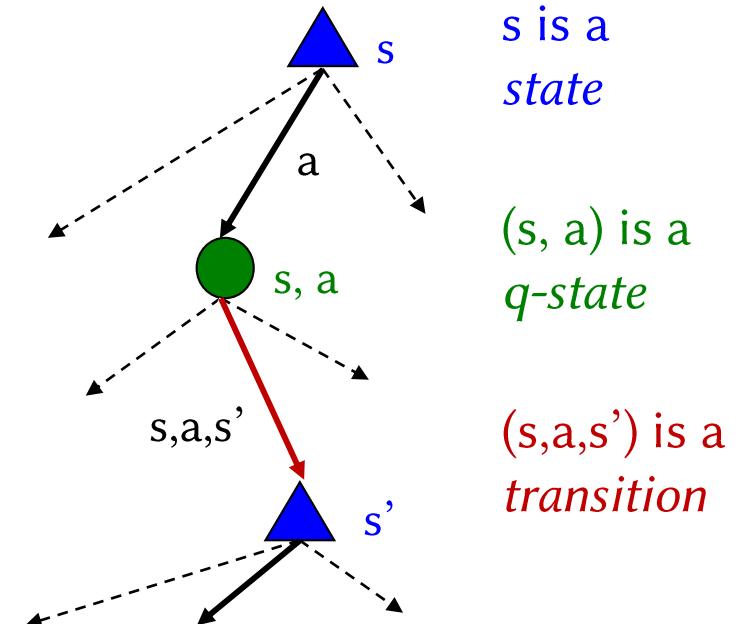
- The value (utility) of a state s :

$U^*(s) = U^{\pi^*}(s)$ = expected utility starting in s and acting optimally

- The value (utility) of a q-state (s,a) :

$Q^*(s,a)$ = expected utility of taking action a in state s and (thereafter) acting optimally

$U^*(s) = \max_a Q^*(s,a)$



Bellman equations (Shapley, 1953)

- The value/utility of a state is
 - The expected reward for the next transition plus the discounted value/utility of the next state, assuming the agent chooses the optimal action
- Hence we have a recursive definition of value (Bellman equation):

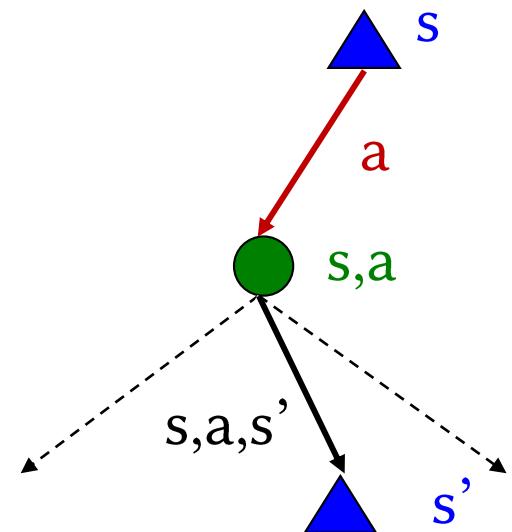
$$U(s) = \max_{a \in A(s)} \sum_{s'} P(s' | s, a) [R(s, a, s') + \gamma U(s')]$$

- Similarly, Bellman equation for Q-functions

$$\begin{aligned} Q(s, a) &= \sum_{s'} P(s' | s, a) [R(s, a, s') + \gamma U(s')] \\ &= \sum_{s'} P(s' | s, a) [R(s, a, s') + \gamma \max_{a'} Q(s', a')] \end{aligned}$$

Value Iteration

- Start with (say) $U_0(s) = 0$ and some termination parameter ε
- Repeat until convergence (i.e., until all updates smaller than ε)
 - Do a **Bellman update** (essentially one ply of expectimax) from each state:
 - $U_{k+1}(s) \leftarrow \max_a \sum_{s'} P(s' | a, s) [R(s, a, s') + \gamma U_k(s')]$
- Theorem: will converge to unique optimal values



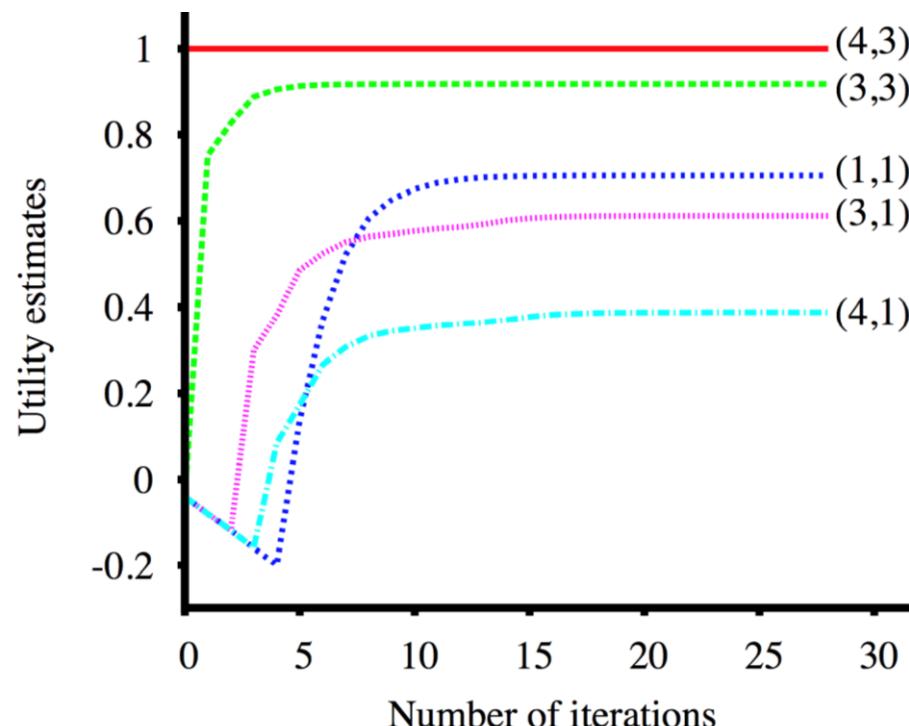
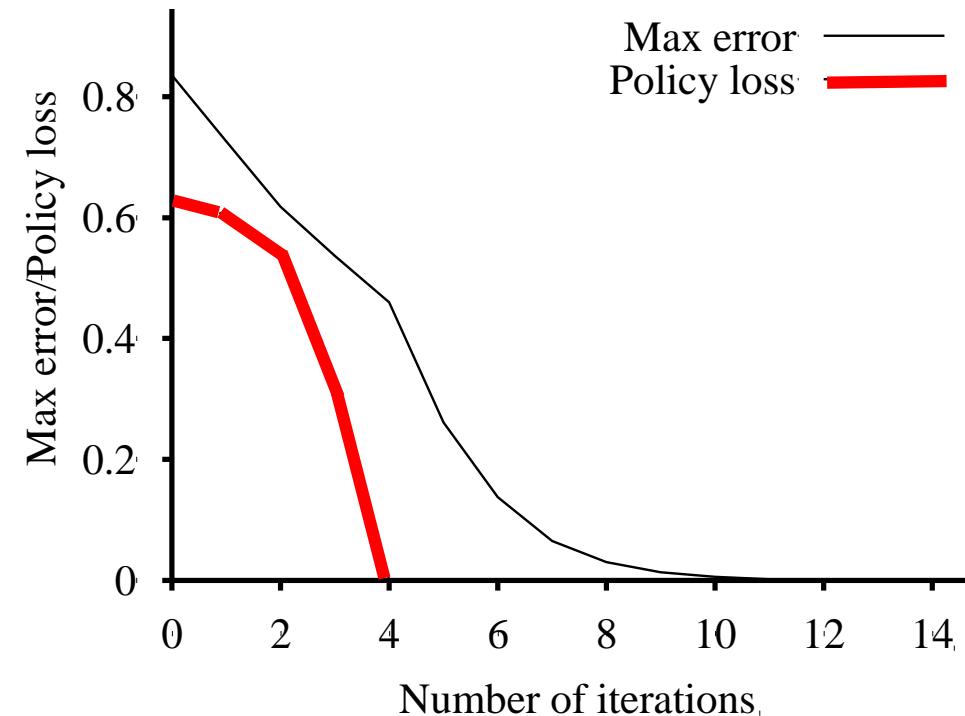
Extracting policy

- How should the agent act given $\mathbf{U}(s)$?
- Maximize expected utility! (as if \mathbf{U} is correct)
- That is, do a mini-expectimax (greedy one-step):
$$\pi_{\mathbf{U}}(s) = \operatorname{argmax}_a \sum_{s'} P(s' | a, s) [R(s, a, s') + \gamma \mathbf{U}(s')]$$
- This is called **policy extraction**, since it finds the policy $\pi_{\mathbf{U}}$ implied by the values \mathbf{U}

How good is the policy extracted from VI?

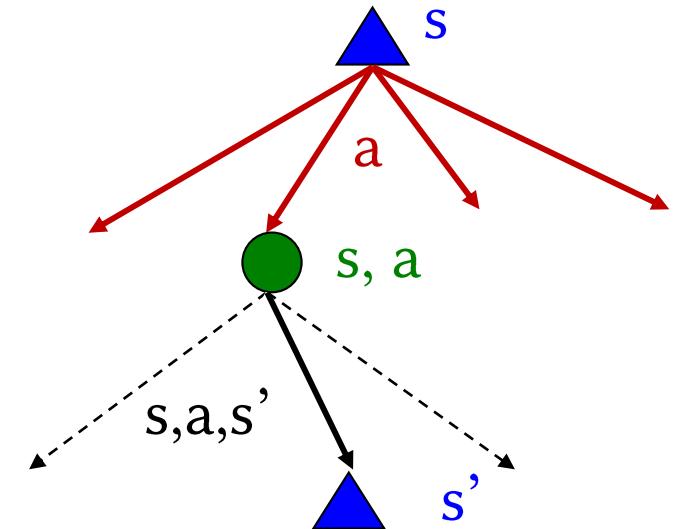
- The quality of a policy π is measured by the policy loss $\| \mathbf{U}^\pi - \mathbf{U}^* \|$
- Let $\pi_k = \pi_{\mathbf{U}_k}$ i.e. the implied policy at step k
 - When $\| \mathbf{U}_k - \mathbf{U}^* \| \leq \varepsilon$, policy loss is bounded:

$$\| \mathbf{U}^{\pi_k} - \mathbf{U}^* \| \leq 2\varepsilon\gamma/(1-\gamma)$$

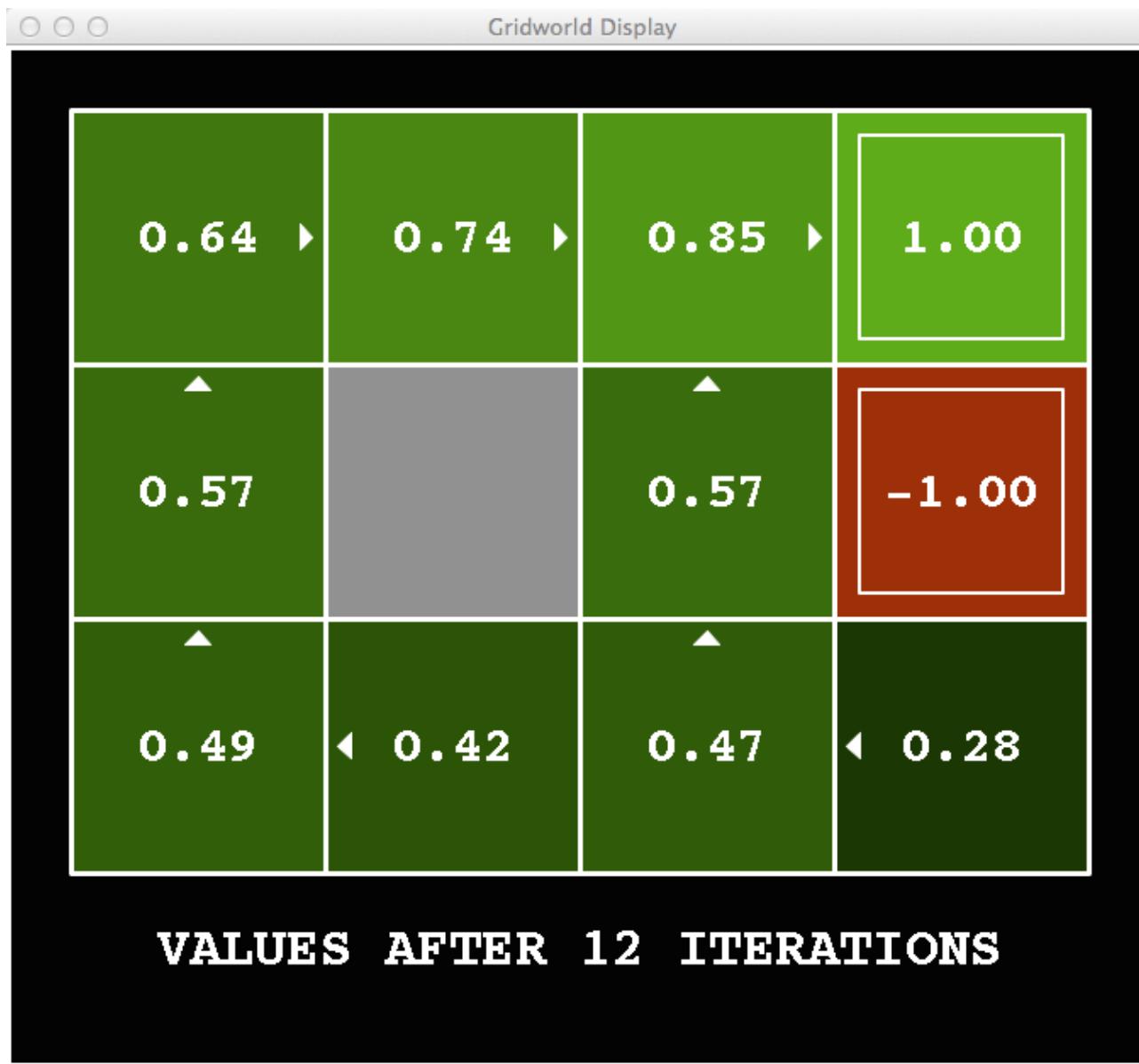


Problems with Value Iteration

- Value iteration repeats the Bellman updates:
 - $U_{k+1}(s) \leftarrow \max_a \sum_{s'} P(s' | a, s) [R(s, a, s') + \gamma U_k(s')]$
- Problem 1: It's slow – $O(S^2A)$ per iteration
- Problem 2: The “max” at each state rarely changes
- Problem 3: The policy often converges long before the values



Policy Iteration



Policy Iteration

Policy Iteration

- Basic idea: make the implied policy in U explicit, compute **its long-term implications for value**
- Repeat until no change in policy:
 - **Step 1: Policy evaluation:** calculate value U^{π_k} for current policy π_k
 - **Step 2: Policy improvement:** extract the new implied policy π_{k+1} from U^{π_k}
- It's still optimal!
- Can converge (much) faster under some conditions

Quiz

- Which of the following correctly defines a Markov Decision Process (MDP)?
 - A deterministic search problem with a single terminal state
 - A probabilistic model defined by states, actions, rewards, and transition probabilities
 - A logical model defined by inference rules and operators
 - A supervised learning task with labeled examples
- What does the Markov property state in an MDP?
 - The future is independent of the past, given the present state.
 - The future depends on all previous actions equally.
 - Each action has deterministic outcomes.
 - Rewards depend only on the initial state.

Quiz

- Which of the following correctly defines a Markov Decision Process (MDP)?
 - A deterministic search problem with a single terminal state
 - A probabilistic model defined by states, actions, rewards, and transition probabilities**
 - A logical model defined by inference rules and operators
 - A supervised learning task with labeled examples
- What does the Markov property state in an MDP?
 - The future is independent of the past, given the present state.**
 - The future depends on all previous actions equally.
 - Each action has deterministic outcomes.
 - Rewards depend only on the initial state.

Quiz

- Which of the following expresses the Bellman optimality condition?
 - $V(s) = R(s)$
 - $V^*(s) = \max_a \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V^*(s')]$
 - $Q(s, a) = R(s, a)$
 - $V^*(s) = \sum_a P(a|s) R(s, a)$
- How do value iteration and policy iteration differ?
 - Value iteration alternates policy evaluation and improvement; policy iteration updates all values simultaneously.
 - Policy iteration alternates between policy evaluation and improvement; value iteration merges them into a single update loop.
 - Policy iteration uses exploration; value iteration does not.
 - Value iteration is stochastic; policy iteration is deterministic.

Quiz

- Which of the following expresses the Bellman optimality condition?
 - $V(s) = R(s)$
 - $V^*(s) = \max_a \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V^*(s')]$
 - $Q(s, a) = R(s, a)$
 - $V^*(s) = \sum_a P(a|s) R(s, a)$
- How do value iteration and policy iteration differ?
 - Value iteration alternates policy evaluation and improvement; policy iteration updates all values simultaneously.
 - Policy iteration alternates between policy evaluation and improvement; value iteration merges them into a single update loop.
 - Policy iteration uses exploration; value iteration does not.
 - Value iteration is stochastic; policy iteration is deterministic.

Quiz

- Why are MDPs central to modern AI?
 - A. They describe one-shot classification problems.
 - B. They model reasoning under certainty.
 - C. They formalize sequential decision-making under uncertainty – the foundation of reinforcement learning.
 - D. They only apply to deterministic planning tasks.

Quiz

- Why are MDPs central to modern AI?
 - A. They describe one-shot classification problems.
 - B. They model reasoning under certainty.
 - C. They formalize sequential decision-making under uncertainty — the foundation of reinforcement learning.
 - D. They only apply to deterministic planning tasks.

Summary

- An MDP provides a mathematical framework for **sequential decision making** when outcomes are partly random and partly under the agent's control.
 - It formalizes how a rational agent should act to maximize long-term expected utility.
- Components of an MDP are **States (S)**, **Actions (A)**, **Transition Model ($P(s' | s, a)$)**, **Reward Function ($R(s, a, s')$)** and **Discount Factor ($0 \leq \gamma < 1$)**.
- The Objective is to find a **policy π** that maps each state to the optimal action, maximizing the expected discounted sum of future rewards
- The **Bellman Equations** give the optimal value function satisfies the recursive relationship:
$$U^*(s) = \max_a \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma U^*(s')]$$
 - The utility of a state equals its immediate reward plus the expected discounted value of the next state.
- Solving an MDP
 - Value Iteration: iteratively apply Bellman updates until values converge.
 - Policy Iteration: alternate between evaluating a policy and improving it.