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Uncertainty and Time

 Method: Belief state, transition model and sensor model

* Often, we want to reason about a sequence of observations
where the state of the underlying system is changing
* Speech recognition

* Robot localization
* User attention
* Medical monitoring

* Global climate

e Now we need to introduce time into our models



Discrete-Time Model

* Discrete-time model views the problem as snapshots in time,
called time slices

* Each time slice contains a set of random variables, some
observable and some not

* We will assume the same subset of variables are observable in

every time slice
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Discrete-Time Model

e Set of variables at time t:

¢ X,: state variables, assumed to be unobservable

* E.: evidence variables, set of observable variables

* e,: observations at time t

* Transition model P(X, | X,.;.1)

* Specifies the probability distribution over the latest state

variables given the previous values

* Problem: Set X,,,_,is unbounded in size

Notation:

Xa:b - Xa’x

a+1 -

W X,




Markov Models

* Markov assumption: current state depends on only a finite
fixed number of the past states

* Processes satisfying this assumption are called Markov chain
or Markov processes

* First order Markov process -- the present state depends only
on the previous state: P(X, | Xjy.;_1) = P(X; | X;_;)
* X, is independent of X,,..., X, given X,

> (0)-- >

P(Xo) P(Xt | Xo;t_1) - P(Xt | Xt_1)




Markov Models
* Joint distribution P(X,,..., X;) = P(X,) I I, P(X, | X.,)

* A kth-order model allows dependencies on k earlier steps
* Higher order Markov chains can be transformed to the first
order chain

* Time-homogeneous or Stationary process assumption
* Not good we had to specify a different P(X, | X;_) for each t
* We assume that the transition probabilities are the same at

all times
* Usually a justifiable assumption
* Helps to avoid specifying potentially infinite number of probabilities



Markov Models

* Sensor Model (or, onservation model)

* Evidence variable, E; could depend on previous variables
and observations leadlng to similar problem as the transition
model

* Sensor Markov assumption: a current state suffices to
generate the current sensor values

P<Et | XO:t’ E]:t—1) - P(Et| Xt)

* P(E.| X,) is our sensor model



Example

Transition Model

R}f—] P(Rr‘Rr-})
t 0.7
f 03 Sensor Model
Rain,_, Rain,
R, |P(UJR)
t 0.9

0.2

Y Y /
Umbrell@ @bre@

Umbreu@
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Example: Random walk in one dimension
< T T e T T >

4 3 -2 -1 0 1 2 3 4

State: location on the unbounded integer line
Initial state: starts at 0

Transition model: P(X, = k| X;_;= k1) = 0.5
Applications: particle motion in crystals, stock prices, gambling, genetics, ...

How far does it get as a function of t?
* Expected distance is O(+'t)

Does it get back to 0 or can it go off for ever and not come back?
* In 1D and 2D, returns w.p. 1; in 3D, returns w.p. 0.34053733
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Example: Weather

* States {rain, sun}

= Initial distribution P(X)

P(X,)

sun

rain

0.5

0.5

= Transition model P(X, | X;_;)

More ways of representing the same CPT

i1 P(X,]X..,)
sun rain

sun 0.9 0.1

rain | 0.3 0.7

0.9
’ 0.9
sun sun
(i) (sum) %
rain rain
- 0.7
0.1




Weather prediction
* Time 0: <0.5, 0.5>

Xy P(X,]X,.,)

sun rain
sun 0.9 0.1
rain 0.3 0.7

* What is the weather like at time 1?

P(X,) = Zxo P(X, Xo=Xo)
= Z:xo P(Xo=x) P(X;| X;=x,)
= 0.5<0.9, 0.1> + 0.5<0.3, 0.7> = <0.6,0.4>



Weather prediction, contd.
* Time 1: <0.6, 0.4~

Xy P(X,]X,.,)

sun rain
sun 0.9 0.1
rain 0.3 0.7

* What is the weather like at time 2?

P(X,) = Zx1 P(X2,X=x;)
= Z:x1 P(X;=x;) P(X;| X;=x;)
= 0.6<0.9, 0.1> + 0.4<0.3, 0.7> = <0.66, 0.34>



Weather prediction, contd.
X1 P(X,IX,,)

¢ Time 2: <O.66, O.34> sun rain

sun 0.9 0.1

rain 0.3 0.7

* What is the weather like at time 3? N
P(X,)
P(X,) = 2, P(X3,X,=x,) ——

= sz P(X;,=x,) P(X;| X;=x,)
= 0.66<0.9, 0.1> + 0.34<0.3, 0.7> = <0.696, 0.304>

* The influence of initial distribution gets less and less over
time. The distribution much later becomes independent of

the initial distribution



Forward algorithm (simple form)

* What is the state at time t? }ion mOdel]
* P(X) = th_1 P(X(, X(1=X.1)
’ = ZXt_1 P(Xi.1=X¢1) POX Xiy=X¢1)

* Iterate this update starting at t=0

* This is called a recursive update:

P.=g(P.,) = g(glglg( ...Py))))



And the same thing in linear algebra

* What is the weather like at time 2?
P(Xz) = 0.6 <0.9,0.1> + 0.4 <0.3,0.7> = <0.66,0.34>

* In matrix-vector form: X | POGIXey)
0.9 0.3\ (0.6 0.66 sun_| rain

P(X,) = 0.1 0,7) (0.4) B (0.34 sun| 09 | 0.1

rain [ 0.3 0.7

i.e., multiply by T', transpose of transition matrix
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Stationary Distributions

* The limiting distribution is called the stationary
distribution P_ of the chain

* |t satisfiesP_=P_,.=T'P_
* Solving for P_ in the example:

( 8? 83 ) (ﬁp) - (ﬁp)

0.9p + 0.3(1-p) = p, or, p =0.75

00+ 1

* Stationary distribution is <0.75,0.25> regardless of the
starting distribution

00 O




Example: Web browsing
* State: URL visited at step t

* Transition model:
* With probability p, choose an outgoing link at random
* With probability (1-p), choose an arbitrary new page

* Question: What is the stationary distribution over pages?

* That is, if the process runs forever, what fraction of time
does it spend in any given page?

* Application: Webpage ranking




Quiz
* Which statement correctly captures the Markov
assumption used in a Hidden Markov Model?

A.

B.
C.
D.

The current evidence depends only on the previous evidence.
The current state depends on all previous states.
The current state depends only on the previous state.

The evidence is conditionally independent of the current
state.

20



Quiz
* Which statement correctly captures the Markov
assumption used in a Hidden Markov Model?

A.

B.
C.
D.

The current evidence depends only on the previous evidence.
The current state depends on all previous states.
The current state depends only on the previous state.

The evidence is conditionally independent of the current
state.

21



Quiz
1. Why can’t a static Bayesian network adequately model an
agent’s beliefs about a changing world?

2. In a temporal model, what are the two main assumptions
that simplify inference?
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Quiz
1.  Why can’t a static Bayesian network adequately model an agent’s
beliefs about a changing world?

* BN assumes that variables are independent of time. In dynamic
environments, the current state depends on previous states, requiring
temporal dependence be captured. Dynamic Bayesian Networks (DBNs)

or Hidden Markov Models (HMMs) do just that.

2. In a temporal model, what are the two main assumptions that
simplify inference?

*  Markov assumption: P(XX;; )=P(X\/X,_;)
 Stationary process assumption: transition and sensor models do not
change over time, i.e., P(X,X,_;) and P(E,X,) are constant.
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Hidden Markov Models (HMM)

* Underlying Markov chain over belief states X

* You observe evidence E at each time step



Example: Weather HMM

* An HMM is defined by
* Initial distribution: P(X,)
* Transition model: P(X,X,.,)
* Sensor model: P(E,| X,)

Rain,_, Rain, Rain,,,

Umbrella,_, Umbrella, Umbrella,,,

o| [

Ri1 P(R;IR¢.)
rain -rain
t 0.7 0.3
f 0.3 0.7
R, P(U,|R,)
true false
t 0.9 0.1
f 0.2 0.8




HMM as probability model
* Joint distribution for MM: P(X,,) = P(X,) [ I._.. P(X. | X ;)

* Joint distribution for HMM:
P(XO:t’ E]:t) = P(XO) Hi=1:t P<X| | Xi—1) P(E|| Xl)
* Future states are independent of the past given the present

* Current evidence is independent of everything else given the
current state

* Are evidence variables independent of each other?

@ @ @ @ o Useful notation:
@ @ @ Xa:b - XaaXa+1,..., Xb



Real HMM Examples

* Speech recognition HMMs:
* Observations are acoustic signals (continuous valued)

* States are specific positions in specific words (so, tens of
thousands)

* Machine translation HMMs:
* Observations are words (tens of thousands)

* States are translation options

* Robot tracking:
* Observations are range readings (continuous)

* States are positions on a map (continuous)



Inference tasks

* Filtering: P(X,|e.,)
* Find belief state given evidences —input to the decision process
of a rational agent, signal processing origin of the term

* Prediction: P(X,,,|e;.) for k>0
* Evaluation of possible action sequences; like filtering without the
evidence

* Smoothing: P(X,|e,,) for 0 < k <t

* Better estimate of past states, essential for learning
* Most likely explanation: arg max, P(x.|e;,)

* Speech recognition, decoding with a noisy channel
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Filtering: P(X(|e;.,)
OrOOHD)
) () &

Smoothing: P(X,|e,,), k<t
o\
010050
) @ @ ©

Prediction: P(X,,,|e;.)

OLOLOLO)




Filtering / Monitoring
* Filtering, or monitoring, or state estimation, is the task of
maintaining the distribution f,, = P(X,|e,,) over time
* We start with f;, in an initial setting, usually uniform
* Filtering is a fundamental task in engineering and science

* The Kalman filter (continuous variables, linear dynamics, Gaussian
noise) was invented in 1960 and used for trajectory estimation in

the Apollo program

* Core ideas used by Gauss for planetary observations
* 13.80,000 references on Google Scholar [Nov 2025]




Example: Robot Localization
t=0
Sensor model: four bits for wall/no-wall in each direction,
Transition model: action may fail with small probability

- >
Example from _’
Michael Pfeiffer v

Prob 0 1



Example: Robot Localization
t=1
Lighter grey: was possibleto get the reading, but /less likely (required 1 mistake)

Prob 0 1



Example: Robot Localization
t=2

Prob 0 1



Example: Robot Localization
t=3

Prob 0 1



Example: Robot Localization
t=4

Prob 0 1



Example: Robot Localization
t=5

Prob 0 1



Filtering algorithm

* Aim: devise a recursive filtering algorithm of the form
* P(Xiilena) = glews, P(Xery) )

° P(Xt+1|e1:t+1) -



Filtering algorithm
* Aim: devise a recursive filtering algorithm of the form

* P(Xiqleqq) = fleg, P(Xileqy) )

° P(Xt+1|e1:t+1) - P(Xt+1|e1:t’ et+1)
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Filtering algorithm

* Aim: devise a recursive filtering algorithm of the form
P(Xialeqe.1) = flewq, P(Xleqy) )

* P(Xialer) = PXialers eq)
= o Pe. 4| X, €1) P(Xio] €14)
= P(et+1|Xj+1) P(Xi.1] €14)

Apply sensor Markov
conditional independence
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Filtering algorithm

* Aim: devise a recursive filtering algorithm of the form
* PXialeqes) = fleq, P(X{ery) )

* P(Xi.qleqq) = PXialers €4i)
= o P(e,1[Xi, 1 €4) P(Xi,4 €1)

= o P(e,1[X,1) P(X.4] €1,)
= o P(e,,.4X,, 1) th P(x; | €1.) P(Xi.1] X €1)

i Condition on X, '

44




Filtering algorithm

* Aim: devise a recursive filtering algorithm of the form
* PXialeqes) = fleq, P(X{ery) )

* P(Xi,1leres1) = P(Xiiqlere €iq)
= o Pe. 4| Xy, 1, €1) P(Xi4] €140)
= o P(e,4|X(,1) P(Xi,q] €1)
= o Pe, X, 1) 2, P(Xt | €1) P(Xiil X4 €40)
= o Ple4|X,,q) Z P(Xt+1| X)) P(xi| e

Normalize l i Sensor model ' h{lon modm

Apply conditional
independence




Filtering algorithm
* P(Xt+1|e1:t+1) =« P(et+1|Xt+1) th P(Xt | e1:’[) P(Xt+1| Xt)

Normalize | i Update | i Predict I

° f1:t+1 = FORWARD(f1t ’ et+1)

* Cost per time step: O(|X|?) where [X| is the number of states
* Time and space costs are constant, independent of t

* O(|X]?) is infeasible for models with many state variables =
* We get to invent really cool approximate filtering algorithms

46



And the same thing in linear algebra

* Transition matrix T, observation matrix O,

* Observation matrix has state likelihoods for E, along diagonal

0.2 0
 E.g., for U, =true, O, = 0 0.9

* Filtering algorithm becomes
* flu=a Oy Ty

X:.1 P(X|X..1)

sun rain
sun 0.9 0.1
rain 0.3 0.7
W, P(U,|W,)
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Example: Rain HMM

0.63

predict predic 0.37
update update
P(rain) = 0.5 P(rain) = 0.82 P(raln) 0.88

P(-rain) = 0.5

P(R,)

0.5

0.5

P(—lraln) 0.18 P(—|ra|n) 0.12

Rain, Rain,

Umbrella, Umbrella,

R P(R(R.,)
t f
t 0.7 0.3
f 0.3 0.7
R, P(U,|R)
true false
t 0.9 0.1
f 0.2 0.8




Example 2: Weather HMM

Wt'1 P(thwt-T)
0.45 sun rain
predict predic 0.55 sun 0.9 0.1
update l update rain | 0.3 0.7
P(sun) = 0.5 P(sun) = 0.25 P(sun) = 0.154
P(rain) = 0.5 P(raln =0.75 P(rain) = 0.846 W, P(U,|W,)
true false
sun 0.2 0.8
Weather, Weather, Weather, ain 0.9 01
P(W,)

kL N Umbrella, Umbrella,
0.5 0.5




Quiz
1. Which of the following best describes the goal of filtering in temporal
probabilistic reasoning?

A. Estimating the most likely future state of the system.

B. Estimating the distribution over the current state given all past
evidence.

C. Estimating the probability of all previous states given current evidence.

2. In the recursive filtering equation, P(X,,le,..,) = o P(e, ;|X..,) 2., P(Xt
| e..) P(X.,;| x;), what does the summation over x, represent?
A. Normalization to ensure probabilities sum to 1

B. Marginalization over all possible previous states

C. Evidence update using the sensor model
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* Reading: Chapter 14
* Assignments: PS 8

* Next: Chapter 16. Utility theory



