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Reminder: Elementary Probability
* Basiclaws: 0 <P(w) <1 2, .o P(®) =1
* Events: subsets of Q: P(A) = 2. _ » P(®)

* Random variable X(®) has a value in each ®
* Distribution P(X) gives probability for each possible value x
* Joint distribution P(X)Y) gives total probability for each
combination x,y
* Summing out/marginalization: P(X=x) = 2., P(X=x,Y=y)
 Conditional probability: P(X|Y) = P(X,Y)/P(Y)
* Product rule: P(X|Y)P(Y) = P(X)Y) = P(Y[X)P(X)
* Generalize to chain rule: P(X,,...X ) = [ P(X| X1,..,Xi_1)2



Bayes’” Rule
* The product rule both ways: P(a | b) P(b) = P(a, b) = P(b | a) P(a)
* Dividing left and right expressions, we get the Bayes’ Rule "

P@|b)= Pb IP?I)))P(E‘)

* Why is this at all helpful?

* Lets us build one conditional from its reverse

* Often one conditional is tricky but the other one is simple

* Describes an “update” step from prior P(a) to posterior P(a | b)
* Foundation of many Al systems

* In the running for the most important Al equation!


http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg
http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg

Inference with Bayes’ Rule
* Diagnostic probability from causal probability or likelihood

P(cause | effect) = P(effect | ;?‘Ee) l;(cause)
efrect
* Example: o P(s| m) = 0.8 N
* M: meningitis P(s| -m) = 0.01 F . P
® S: Stlﬂ: neCk P(m) = 0.0001 glvens
P(m |s) = P(s| m) P(m) . 0.8 x0.0001
P(S) 0.01

* Posterior probability of meningitis still very small: 0.008
* You should still get stiff necks checked out! Why?



Independence

* Two variables X and Y are (absolutely) independent if
vxy  P(xy) = P(x) P(y)

* The joint distribution factors into a product of two simpler
distributions

* Equivalently, via the product rule P(x,y) = P(x|y) P(y),

P(x|y)=P(x) or P(y|x)=P(y)




Independence

* Example: two dice rolls Roll, and Roll,

* P(Roll,=5, Roll,=3) = P(Roll,=5) P(Roll,=3) = 1/6 x 1/6 = 1/36
* P(Roll,=3| Roll,=5) = P(Roll,=3)

@



Conditional Independence

* Conditional independence is our most basic and robust form of
knowledge about uncertain environments.

* X is conditionally independent of Y given Z if and only if:
Vx,y,z P(x |y, z) = P(x | z)
P(y [ x,2) = P(y | 2)

or, equivalently, if and only if
Vxyz  P(xy|2z)=Px[2)Ply|2)



Conditional Independence

* Example

* Cavity
 Toothache

* Weather
Toothache @




Conditional Independence
* What about this domain?

* Fire
* Smoke
* Alarm




Bayesian Networks
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Bayes Net Syntax and Semantics




Bayesian Networks (Bayes Nets)

* Full joint probability distribution can answer any query but at the
cost of exponentially large joint probability tables

* Absolute and conditional independence among variables can
greatly reduce the number of probabilities that need to be S
specified for defining the full joint distribution as 2

* Bayes nets, also called belief networks, is a data structure used to
represent dependencies among variables

* A Bayes Net is a directed graph where each node is annotated
with conditional probability distributions
* A subset of the general class of probabilistic graphical models



Bayes Net Syntax

* A set of nodes, one per random variable X,

* Can be discrete or continuous
* Can be assigned (observed) or unassigned (unobserved)

* Directed arrows connect node pairs in a Parent-Child

relationship
* [Indicates “direct influence” between variables

* Absence of arc encodes conditional independence (more

later)
* The resulting graph is a DAG &

W



Bayes Net Syntax

* Each node has associated conditional probability distribution
that quantifies the effects of its parents

* Local causality and conditional independence leads to
compact representation of the joint distribution @,
* Each variable interacting locally with a few others 2 %
J 5.

__©_ B

Bayes net = Topology (graph) + Local Conditional Probabilities



Example: Coin Flips

* N independent coin flips

* No interactions between variables: absolute independence




Example: Smoke alarm

* Variables:

* F: There is fire G

* S: There is smoke

* A: Alarm sounds




Example: loT Network

P(O)
dark dim bright
2 P(PI)
0.4 0.3 0.3
1 yes no
0.25 0.75
P
licht erson
& Inside
0 PI P(L| O,PI) ~ oS 7D
true false Motion
true false

Sensor

k . 01
dar yes | 0991 0.0 true | 095 0.05

di 080 | 0.20 2
'mo|oves false | 0.01 0.99

bright | vyes 0.10 | 0.90

* no 0.01 0.99

Show: P(L) = <0.1815, 0.8185>
P(PI | MS =y) = <0.8333, 0.1667>
P(L| MS =y, O = dark) = <0.8287, 0.1733>




Example: Alarm Network

P(B)

true

false

0.001

0.999

1 1
Burglary Earthquake

PUIA)

true

false

true

0.9

0.1

false

0.05

0.95

P(E)
true false
0.002 0.998
B E P(A|B,E)
true false
true | true 0.95 0.05
true | false 0.94 0.06
false | true 0.29 0.71
false | false | 0.001 0.999
A P(M|A)
true false
true 0.7 0.3
2
false 0.01 0.99

Number of free parameters
in each CPT:

1. Parent range sizes d,....d,
2. Child range size d

3. Each row must sumto 1

(d-1) I, d;




Sparse Bayes Nets
* Suppose

* n variables
* Maximum domain size is d

* Maximum number of parents is k

* Then, full joint distribution has size O(d")
* But Bayes Net has size O(n -d¥)

* Linear scaling with n as long as causal structure is local

* Called sparse networks
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Bayes Net global semantics

* Bayes nets encode joint distributions as product of
conditional distributions on each variable

P(X,,...X,) = 11 P(X; | Parents(X)))



Example P(b—e, a, —j, —m) = P(b) P(=e) P(alb,—e) P(—jla) P(—mla)
=.001x.998x.94x.1x.3=.000028

P(B) P(E)
true I false true | false
0.001 IO'999 0.002 | 0.998
B E P(A|B,E)
true || false
true | true | 0.95 0.05
true | false | 0.94 | 0.06
false | true | 0.29 | 0.71
false | false | 0.001 | 0.999
A P(J|A) A P(M|A)
true | false true | false
B 00 e true || 0.7 | 03
fals [ 0.05 0.95 false | 0.01 0.99
- 32




Conditional independence in BNs .

* Let X,,..,X, be sorted in topological order according to the graph,
i.e., parents before children, so

Parents(X)) € X,,....X

* So the Bayes net asserts conditional independences
P(X: | X;5..,X, ;) = P(X: | Parents(X.))
* To ensure these are valid, choose parents for node X. that
“shield” it from other predecessors

*PIM|J,AJE,B)=P (M| A)



Conditional independence semantics

* Every variable is conditionally independent of its
* Other predecessors given its parents

* Non-descendants given its parents
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Conditional independence semantics

* Markov blanket of a node: parents, children and children’s
parents

* Every variable is conditionally independent of all other nodes
given its Markov blanket

* d-Separation is yet another test
* Moralize the graph
* Test whether Z blocks all paths
fromXtoY.Ifyes, X LY |Z




Example: Burglary

cJ1IMJ|A
* Markov blanket of J includes A only

* B is not independent of E given A
*BL],M|AE




Quiz
1.  What does a Bayesian network use to represent dependencies
between variables?
A. Undirected graph
B. Directed acyclic graph (DAG)
C. Tree structure
D. Bipartite graph
2. Which property is explicitly encoded by the structure of a
Bayesian network?
A. Conditional independence
B. Causal strength
C. Temporal ordering

D. Clustering coefficient
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Quiz

1. Suppose variable X is independent of Y given Z in a
Bayesian network. Which expression represents this?

A. P(X|Y,Z)=P(X
B. P(X,Y|Z)=P(X
C. P(XY,Z)=P(X

D. P(X]Y)=P(X)

2. What is the role of evidence in a Bayesian network?
A. Defines the prior probabilities.

B. Enables updat
C. It rearranges t

ing probability distributions.

he network structure.
40
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Bayesian network. Which expression represents this?

A. P(X|Y,Z)=P(X
B. P(X,Y|Z)=P(X
C. P(XY,Z)=P(X

D. P(X]Y)=P(X)

2. What is the role of evidence in a Bayesian network?
A. Defines the prior probabilities.

B. Enables updat
C. It rearranges t

ing probability distributions.

he network structure.
41



Quiz
1. How is the joint probability distribution of all variables in a
Bayesian network computed?
A. By summing the probabilities of each node
B. By multiplying probabilities along the longest path

C. By multiplying the conditional probabilities of each node
given Its parents

D. By dividing the total probability equally among all nodes

42



Inference by Enumeration in Bayes Net

* Reminder of inference by enumeration

* Any probability of interest can be computed by summing
entries from the joint distribution:
* P(Q|e)=a2, P(Q,h,e)

* Entries from the joint distribution can be obtained from a

BN by multiplying the corresponding conditional
probabilities



Inference by Enumeration in Bayes Net
* PB|j,m)= a2. 2 P(B, e a,jm)
= a2, 2,P(B)P(e) Pa| B, e) P(j|a) P(m | a)

* So inference in Bayes nets means computing sums of products of
numbers: sounds easy!!

* Problem: sums of exponentially many products!



Inference by Enumeration in Bayes Net
* P(B|j, m) = aP(B) 2., Pe) Pa| B, e) P(j| a) P(m | a)

* P(b|j, m)=a"0.00059224, P (—b | j, m)=o " 0.0014919

* P(B|j, m)=<0.2842, 0.7158>

P(-alb,e) P(alb,—e)
05 94

P(-alb,—e)

95 .06

P(jla) P(jl=a) P(jla P(jl=a)
90 05 90 05

P(mla) P(ml-a) P(mla) P(ml-a)

70 01 70 0
o o )



Inference by Enumeration in Bayes Net
* Note:  P(B|j) = <0.0163, 0.9873>
BUT
P(B | j, "m) = <0.0051, 0.9949> !!

* Homework.
 Show that
* P(B|—j, m)=<0.0069, 0.9931> e
* P(A) = <0.0025, 0.9975>
* P(A]j, m) = <0.7607, 0.2393> O



Can we do better?

2. P(B) P(e) P(a|B.e) P(jla) P(mla)

= P(B)P(e) P(alBe)  P(jla) P(mla)
+ P(B) P(—e) P(a|B,—e) P(jla) P(mla)
+ P(B) P(e) P(—alB,e) P(j|—a)P(m|—-a)
+ P(B) P(—e) P(—a|B,—e) P(j|—a) P(m|—a)

Lots of repeated subexpressions!

49



Can we do better?

* Consider uwy + UWZ + UXY + UXZ + VWY + VWZ + VXY +VXZ
* 16 multiplies, 7 adds
* Lots of repeated subexpressions!

* Rewrite as (u+v)(w+x)(y+z)
* 2 multiplies, 3 adds

50



Variable elimination

* Store calculations to eliminate repeated evaluations

* Move summations inwards as far as possible
P(B[j, m)=a2.,P(B)Pe) P(a| B, e) P(j|a) P(m | a)
= a P(B) 2. P(e) 2,P(a| B, e) P(j|a) P(m]a)
* Do the calculation from right to left (inside out)
* Sum over a first, then sum over e

51



Operation 1: Pointwise product

* In pointwise product of factors (similar to a database join,
not matrix multiply!)
* New factor has union of variables of the two original factors
* Each entry is the product of the corresponding entries from
the original factors

PUJIA) x P(A) = P(A))

p(A) P(JIA) P(A)
A\ true | false A\ | true | false
true 0.1
¢ Example: X true | 09 | 0.1 true | 0.09 [ 0.01
false 0.9 -
false 0.05 | 0.95 false | 0.045 | 0.855

3 B |



Operation 1: Pointwise product f% W - .

* Another example:

t t 3 t t 2 t t t 3 x.2=.06
t f i t f 8 t t f 3 x.8=.24
f t 9 f t 6 t f t g x.6=.42
f f A f f 4 t f f I x.4=.28
f t t 9x.2=.18
f t f 9Ix.8=.72
f f t 1 x.6=.06
f f f A x.4=.04

Figure 13.12 Illustrating pointwise multiplication: f(X,Y) x g(¥Y,Z) =h(X,Y,Z).



Operation 2: Summing out a variable

* Summing out or Marginalizing a variable from a factor shrinks a
factor to a smaller one

» Example: 2, P(A)) = P(A,j) + P(A,—j) = P(A)

P(A))

ALl

true

false

true

0.09

0.01

false

0.045

0.855

Marginalize |
)

P(A)

true

0.1

false

0.9

2y




Summing out from a product of factors

* Project the factors each way first, then sum the products

2. P(alB,e) x P(jla) x P(mla) Mﬁ !!
= P(a|B,e) x P(jla) x P(m|a)

+ P(—a|B,e) x P(jl-a) x P(m|—a)

Example:

hy(Y,Z) = Y h(X.Y.Z) =h(x,Y.Z) + h(-x.Y,Z)

_ (0624 (.18 .72 _ (.24 96
— \ .42 28 06 .04 )~ \ 48 32



Variable Elimination -
* Query: P(Q | E;=e,, ..., E,=e))

* Start with initial factors:
* Local CPTs (but instantiated by evidence)

* While there are still hidden variables (not Q or evidence):
* Pick a hidden variable H,

* Eliminate (marginalize) H, from the product of all factors
mentioning H,

* Join all remaining factors and normalize

f%.gl XX



Example  query p3jm)

P(B|j.m)= of (B foq )% Y f3(A.B.E) x f4(A) x fs5(A)

P(B) P(E) P(AB.E) P(jlA)  P(m|A)

Choose A
P(AIB.E) (&) (&
P(j|A) '
i) ) pimBe 0O
P(B) P(E) P(j,m|B,E) o 0




Example

Query P(B | j,m)

P(B)  P(E)

P(j,m|B,E)

Choose E
P(E)
P(j,m|B,E)

x> [E) Pimp)

P(B) P(j,m|B)

Finish with B
P(B)
P(j,m|B)

jl> P(j,m,B)

Normalize > P(B|J,m)



Order matters
* Order the terms Z, A, BC, D

P(D) = a2, .1 P(2) P(alz) P(blz) P(c|z) P(Dlz)
= a 2, P(z) 2., P(alz) 2, P(blz) 2. P(c[z) P(D|z)

* Largest factor has 2 variables (D, Z) e



Order matters
* Order the terms A,BC, D, Z

P(D) = a 2, P(alz) P(blz) P(c[z) P(D|z) P(z)
= o 2, 2 2 2, P(afz) P(blz) P(c[z) P(Dfz) P(z)

* Largest factor has 4 variables (A,B,C,D)
* In general, with n leaves, factor of size 2"

* Finding optimal ordering is intractable! a



Quiz

* Order the terms for P(J | b)



Quiz
* P(J|b)=aP(b) 2.P(e) 2,P(a|b,e)P(J|a) 2 P(m|a)

* Every variable that is not an ancestor of query or evidence
does not matter - M in this example



Quiz
1. What does a factor f(X,Y) represent in the context of Bayes
net?
A. A function giving scores to each value pair of X and Y
B. A way to normalize probabilities
C. A method for determining variable elimination order

2. What is the reason for carefully choosing the variable
elimination order?

A. Reduces the number of required normalizations
B. Minimizes the size of intermediate factors
C. Eliminates the need for conditioning on evidence
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Quiz
* When do you normalize the final factor in variable
elimination?
A. After each marginalization step
B. Before any evidence is conditioned
C. Once all hidden variables are eliminated
D.

Never. Normalization is not needed
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VE: Computational and Space Complexity

* The computational and space complexity of variable elimination is
determined by the largest factor (and it’s space that kills you)

* The elimination ordering can greatly affect the size of the largest

factor.
* E.g., previous slide’s example 2" vs. 2

* Does there always exist an ordering that only results in small

factors?
e No!



Polytrees
* A polytree is a directed graph with no undirected cycles

* For polytrees the complexity of variable elimination is linear
in the network size (number of CPT entries) if you eliminate
from the leave towards the roots

ot 3o o bbb



Worst Case Complexity - Reduction from SAT

* Variables: W, X, Y, Z
CNF clauses:
1. C;,=WvXvY

2. C,=YVZv—aW
3. C;=XvYv—Z

Sentence S = C, A C, AC,

P(S) > 0 iff S is satisfiable
= NP-hard

P(S) = K x 0.5" where K is the number of satisfying assignments for
clauses

= #P-hard




Summary

* Independence and conditional independence are important
forms of probabilistic knowledge

* Bayes nets encode joint distributions efficiently by taking
advantage of conditional independence
* Global joint probability = product of local conditionals

* Exact inference = sums of products of conditional
probabilities from the network




* Reading: Chapter 13
* Assignments: PS 7

* Next:
* Chapter 14 - Markov Models



