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Uncertainty

* The real world is rife with uncertainty!
* If | leave for SFO 60 minutes before my flight, will | be there

in time?
* Problems:
* partial observability (road state, other drivers’ plans, etc.)
* noisy sensors (radio traffic reports, Google maps)

* immense complexity of modelling & predicting traffic,
security line, etc.

* lack of knowledge of world dynamics (will tire burst? need
COVID test?)



Uncertainty

* Probabilistic assertions summarize effects of ignorance and
laziness

* Probability theory + Utility theory = Decision theory

* Maximize expected utility
e a* =argmax, 2. P(s|a) U(s)



Basic laws of probability

* Begin with a set () of possible worlds
* E.g., 6 possible rolls of a die, {1, 2, 3, 4, 5, 6}

* A probability model assigns a number P(®) to each world ®
* E.g., P(1) = P(2) = P(3) = P(5) = P(5) = P(6) = 1/6.

* These numbers must satisfy
* 0<P(w)<1
° Zco e P(w) =1



Basic laws contd.

* An event is any subset of (2
* E.g., “roll < 4” is the set {1,2,3}
* E.g., “roll is odd” is the set {1,3,5}

* The probability of an event is the sum of probabilities over its
worlds
* P(A) =2, ca Plw)
* E.g., P(roll <4) =P(1) + P(2) + P(3) = 1/2

* De Finetti (1931): anyone who bets according to probabilities that
violate these [aws can be forced to lose money on every set of bets

* No rational agent can have beliefs that violate probability axioms



Random Variables

* A random variable is some aspect of the world about
which we may be uncertain

* Formally a deterministic function of ®

* The range of a random variable is the set of possible
values

* Odd = Is the dice roll an odd number? — {true, false}
* e.g. Odd(1)=true, Odd(6) = false
* often write the event Odd=true as odd, Odd=false as —odd
* T =Isit hot or cold? — {hot, cold}
* D = How long will it take to get to the airport? — [0, )
* Lwumpus = Where is the wumpus? — {(0,0), (0,1), ...}



Random Variables

* The probability distribution of a random variable X gives
the probability for each value x in its range (probability of the
event X=x)

* PX=%) = 2 1 X(w)=x} P(@)
* P(x) for short (when unambiguous)

* P(X) refers to the entire distribution (think of it as a vector or
table)



Probability Distributions

* Associate a probability with each value; sums to 1

= Temperature:

XT)
T P
hot | 0.5
cold | 0.5

= Weather:

W)

W

Joint distribution

sun

rain

fog

meteor

ATW)
Temperature
hot cold

_ |sun 0.45 |0.15
< | rain 0.02 [0.08
§ fog 0.03 [0.27

meteor |0.00 |0.00




Making possible worlds

* In many cases we
* begin with random variables and their domains

* construct possible worlds as assignments of values to all
variables

* E.g., two dice rolls Roll; and Roll,
* How many possible worlds?

* What are their probabilities?

» Size of distribution for n variables with range size d: d"
* For all but the smallest distributions, cannot write out by

hand!



Probabilities of events

* Recall that the probability of an event is the sum of probabilities of
its worlds:

P(A) =2m € A P(w)

* So, given a joint distribution over all variables, can compute any

event probability! = Joint distribution

P(T, W)
* Probability that it’s hot AND sunny?
Temperature
hot | cold
° Probability that it’s hot? sun 045 |0.15
< |rain 002 [0.08
S
* Probability that it’s hot OR not foggy? < | fog 003 [0.27
meteor | 0.00 [0.00




The Product Rule

* Sometimes have conditional distributions but want the joint

P(a|b) P(b) = P(a,b) <mmmp PGalb)- PaDb)

P(b)



The Product Rule: Example
P(W | T) P(T) = P(W, T)

PVID POW, T)
— = P Temperature

hot cold
- d 0.45 0.15

hot | 0.5 h . sun : :
cold 0.5 f‘“ rain 0.02 0.08
v | fo 0.03 |0.27

= g

meteor | 0.00 0.00




The Chain Rule

* A joint distribution can be written as a product of conditional
distributions by repeated application of the product rule

P(Xy, X5, X3) = P(x3] Xy, %) P(x3, X5) = P(x3] X3, %)) P(x, [ x;) P(xy)
or,

P(Xq, Xpe0s Xg) = L1 PO | X550 Xi5)



Conditional Probabilities

* A simple relation between joint and conditional probabilities

P(a|b) = P@.b)

P(b)

* In fact, this is taken as the definition of conditional probability

P(T, W)

Pa,b)

Temperature

hot

sun

0.45

rain

0.02

cold

@

P(W=s | T=c) =7

0.08

Weather

fog

0.03

027 Ma)

meteor

0.00

0.00




Conditional Probabilities

* A simple relation between joint and conditional probabilities

P(a|b) - ﬂiﬁ)

* In fact, this is taken as the definition of conditional probability

P(T, W)
Temperature P(W=5 | T=C) =7
hot cold
sun 045 e Ty - P(W=s,T=c) _ ~
3 [ 502 oo P(W=s | T=c) = P(T—0) =0.15/0.50 = 0.3
§ fog 0.03 |0.27
meteor 10.00 1999 = P(W=s, T=c) + P(W=r, T=c) + P(W=f, T=c) + P(W=m, T=c)

=0.15 + 0.08 + 0.27 + 0.00= 0.50



Conditional Distributions

* Distributions for one set of variables given another set

Temperature
hot cold
sun 0.45 0.15
g rain 0.02 0.08
§ fog 0.03 0.27
meteor |0.00 0.00

P(W | T=h)
hot

0.90
0.04
0.06
0.00

P(W | T=c)

cold

0.30
0.16
0.54
0.00

P(W |T)
hot cold




Normalizing a distribution

* (Dictionary) To bring or restore to a

* Procedure:

normal condition

N —

All entries sum to ONE

* Multiply each entry by o = 1/(sum over all entries)

P(W, T)

Temperature

hot cold

sun

0.45 ]10.15

rain

0.02 }§0.08

Weather

fog

0.03 |]0.27

meteor

0.00 §0.00

P(W, T=c)

0.15
0.08
0.27
0.00

P(W | T=c) = P(W, T=c)/P(T=c) = o P(W, T=c)

Normalize

ﬁ

a=1/0.50 =2

0.30

0.16

0.54

0.00




Inference with Bayes’ Rule
* Diagnostic probability from causal probability or likelihood:

P(cause | effect) = P(effect | cause) P(cause)
P(effect)

e Likelihoods need not add to 1



Independence

* Two variables X and Y are independent if
Vxy  P(xy) = P(x) P(y)

* That is, the joint distribution factors into a product of two
simpler distributions

* Equivalently, via the product rule, P(x,y) = P(x|y) P(y)

P(x|y)=P(x) or P(y|x)=P(y)




Independence

* Example: two dice rolls Roll, and Roll,

* P(Roll,=5, Roll,=3) = P(Roll;=5) P(Roll,=3) = 1/6 x 1/6 = 1/36
* P(Roll,=3|Roll;=5) = P(Roll,=3)

@



Example: Independence

* n fair, independent coin flips:

0.5 H |05 . H |05
T 0.5 T 0.5 T 0.5
N —— 7
P(X;, Xy 1oy X.)

-

vs. full joint 2n
distribution




Conditional Independence

* Conditional independence is our most basic and robust form of
knowledge about uncertain environments.

* X is conditionally independent of Y given Z if and only if:
Vx,y,z  P(x|y,z)=P(x]|z)
or, equivalently, if and only if

Vxy.z  P(x,y|z)=P(x|z)Ply|z)



Conditional Independence
* What about this domain:

* Fire
* Smoke
* Alarm




Marginal Distributions

* Marginal distributions are sub-tables which eliminate

variables

* Marginalization (summing out): Collapse a dimension by

adding
P(X=x) = Zy P(X=x, Y=y)

~T)

Temperature
hot | cold
sun 0.45 0.15 0.60
E rain 0.02 |0.08 0.10
£ | fog 0.03 [0.27 ||0.30
meteor |0.00 |0.00 0.00
0.50 |[0.50

W)



Marginal Distributions

* P (cavity) =7

toothache —toothache
catch —catch catch —catch
cavity 0.108 0.012 0.072 0.008
Scavity 0.016 0.064 0.144 0.576



Bayes’” Rule
* The product rule both ways: P(a | b) P(b) = P(a, b) = P(b | a) P(a)
* Dividing left and right expressions, we get the Bayes’ Rule "

P@|b)= Pb IP?I)))P(E‘)

* Why is this at all helpful?

* Lets us build one conditional from its reverse

* Often one conditional is tricky but the other one is simple

* Describes an “update” step from prior P(a) to posterior P(a | b)
* Foundation of many Al systems

* In the running for the most important Al equation!


http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg
http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg

Inference with Bayes’ Rule
* Diagnostic probability from causal probability or likelihood

P(cause | effect) = P(effect | ;?‘Ee) l;(cause)
efrect
* Example: o P(s| m) = 0.8 N
* M: meningitis P(s| -m) = 0.01 F . P
® S: Stlﬂ: neCk P(m) = 0.0001 glvens
P(m |s) = P(s| m) P(m) . 0.8 x0.0001
P(S) 0.01

* Posterior probability of meningitis still very small: 0.008
* You should still get stiff necks checked out! Why?



Probabilistic Inference

* Compute desired probability from a probability model
* Typically for a query variable given evidence

* P(airport on time | no accidents) = 0.90
* These represent the agent’s beliefs given the evidence

* Probabilities can change with new evidence
* P(airport on time | no accidents, 5 a.m.) = 0.95

* P(airport on time | no accidents, 5 a.m., raining) = 0.80

* Beliefs are updated upon observing new evidences



Inference by Enumeration
* Probability model P(X,, ..., X ) is given

* Partition the variables X, ..., X  into sets as follows:
* Evidence variables: E = e

* Query variables: Q :
* Hidden variables: H = We want: P(Q | e)

= Step 1: Select the ™ Step 2: Sum out H from modelto = Step 3: Normalize

entries consistent get joint of query and evidence
with the evidence P(Q,e)= Y, P(Q,h,e) P(Q|e) = o P(Q .e)

0.05
) Xy oy X
/4

025 |

oo |

0.2 - P ‘
0.01 -Q——W

n

D\



Inference by Enumeration
. P(W)?

Season Temp | Weather P
summer hot sun 0.35
summer hot rain 0.01
summer hot fog 0.01
summer hot meteor 0.00
summer cold sun 0.01
summer cold rain 0.05
summer cold fog 0.10
summer cold meteor 0.00

winter hot sun 0.10

winter hot rain 0.01

winter hot fog 0.01

winter hot meteor 0.00

winter cold sun 0.10

winter cold rain 0.10

winter cold fog 0.15

winter cold meteor 0.00




Inference by Enumeration
. P(W)?

* P(W | winter)?

* P(W | winter, cold)?

Season Temp | Weather P
summer hot sun 0.35
summer hot rain 0.01
summer hot fog 0.01
summer hot meteor 0.00
summer cold sun 0.01
summer cold rain 0.05
summer cold fog 0.10
summer cold meteor 0.00

winter hot sun 0.10

winter hot rain 0.01

winter hot fog 0.01

winter hot meteor 0.00

winter cold sun 0.10

winter cold rain 0.10

winter cold fog 0.15

winter cold meteor 0.00




Inference by Enumeration
* P (cavity | toothache) =7
* P (_'C&Vity | toothache) =7

toothache —toothache

catch —catch catch —catch

cavity 0.108 0.012 0.072 0.008
—cavity 0.016 0.064 0.144 0.576



Issues with Inference by Enumeration

* Worst-case time complexity O(d")

¢ exponential in the number of hidden variables

 Space complexity O(d") to store the joint distribution

* All the joint distribution entries must be estimated separately.
That is O(d") data points to estimate!

* We will use conditional independence to improve the inference
complexity



* Reading: Chapter 12
* Assignments: PS 6

* Next:
* Bayesian networks

* Elementary inference in Bayesian networks



