Artificial Intelligence

7. Logical Agent, Propositional Logic

Shashi Prabh

School of Engineering and Applied Science Ahmedabad University

Contents

Contents

Goal: Design knowledge-based agents that use reasoning over an internal representation of knowledge to decide the actions.

Topics

- Basic concepts of knowledge, logic, reasoning
- Knowledge-Based Agents
- Propositional Logic : syntax and semantics
- Inference in Propositional Logic
 - Inference by model checking
 - Inference by theorem proving
- Wumpus world agent using propositional logic

Knowledge-Based (KB) Agents

- Knowledge can be used to make good decisions, i.e., intelligent behavior
 - In early 1960s, McCarthy introduced the idea of using logic to determine actions in his paper "Programs with Common Sense"
 - Rational agents can be defined by the knowledge they possess rather than the programs they run [Newell, "The knowledge level," 1982]
- Problem solving agents are inflexible. A good path finding agent is useful for finding a path but not generalizable to any other task
 - They don't know general facts: the sun sets in the west (strong glaze if driving west), mileage depends on speed, ...
 - The only choice for representing what it knows in a partially observable environment is to list all possible concrete states

Knowledge

- A KB agent uses logic to represent knowledge
 - These agents can combine and recombine information
- Knowledge is contained in agents in the form of sentences in a knowledge representation language that are stored in a knowledge base
 - Knowledge base = set of sentences in a formal language
- Declarative approach to building an agent
 - Tell : add new sentence (what it needs to know) to the KB
 - Can also learn the knowledge
 - Ask : the agent queries the KB what to do
 - Answers must be consistent with the KB

Knowledge

- A KB agent is composed of a knowledge base and an inference mechanism
- Agents can be viewed at the knowledge level i.e., what they know, regardless of how implemented (Newell)
- A single inference algorithm can answer any answerable question

KB Agents

- Agents acquire knowledge through perception, learning, language
 - Knowledge of the effects of actions ("transition model")
 - Knowledge of how the world affects sensors ("sensor model")
 - Knowledge of the current state of the world
- Can keep track of a partially observable world
- Can formulate plans to achieve goals

KB Agents

function KB-AGENT(percept) returns an action persistent: KB, a knowledge base t, a counter, initially 0, indicating time

TELL(*KB*, MAKE-PERCEPT-SENTENCE(*percept*, *t*)) *action* \leftarrow ASK(*KB*, MAKE-ACTION-QUERY(*t*)) TELL(*KB*, MAKE-ACTION-SENTENCE(*action*, *t*)) $t \leftarrow t + 1$

return action

Logic

- Logic has its origins in ancient Greek philosophy and mathematics.
 - Plato discussed the syntactic structure of sentences, their truth and falsity, their meaning, and the validity of logical arguments.
 - The first known systematic study of logic was Aristotle's Organon
- KB consists of sentences formed according to the syntax
 - Syntax: What sentences are valid?
 - Example: x + y = 3

Logic

- Semantics determines the truth of a sentence (only true or false) in a possible world or model
 - What do the sentences mean?
 - What are the possible worlds?
 - Which sentences are true in which worlds? (i.e., definition of truth)
- x + y = 3 and y + x = 3 have different syntax but the same semantics

Different kinds of logic

- Propositional logic
 - Syntax: $P \lor (\neg Q \land R)$; $X_1 \Leftrightarrow$ (Raining $\Rightarrow \neg$ Sunny)
 - Possible world: {P=true, Q=true, R=false, S=true} or 1101
 - Semantics: $\alpha \land \beta$ is true in a world iff is α true and β is true (etc.)
- First-order logic
 - Syntax: $\forall x \exists y P(x, y) \land \neg Q(Joe, f(x)) \Rightarrow f(x)=f(y)$
 - Possible world: Objects o₁, o₂, o₃; P holds for <o₁, o₂>; Q holds for <o₃>; f(o₁)=o₁; Joe=o₃; etc.
 - Semantics: $\phi(\sigma)$ is true in a world if $\sigma = o_i$ and ϕ holds for o_i ; etc.

Different kinds of logic

- Relational databases
 - Syntax: ground relational sentences, e.g., Sibling(Ali, Bo)
 - Possible worlds: (typed) objects and (typed) relations
 - Semantics: sentences in the DB are true, everything else is false
 - Cannot express disjunction, implication, universals, etc.
 - Query language (SQL etc.) typically some variant of first-order logic
 - Often augmented by first-order rule languages, e.g., Datalog
 - Knowledge graphs (roughly: relational DB + ontology of types and relations)
 - Google Knowledge Graph: 5 billion entities, 500 billion facts, >30% of queries
 - Facebook network: 2.8 billion people, trillions of posts, maybe quadrillions of facts

Inference

- Satisfaction: If a sentence α is true in model m, we say that m satisfies α or sometimes m is a model of $\alpha.$
 - We use the notation $M(\alpha)$ to mean the set of all models of α .
- Entailment: Refers to a sentence following logically from another
 - $\alpha \models \beta$ (or, $\alpha \vdash \beta$) denotes " α entails β " or " β follows from α "
- $\alpha \models \beta$ iff in every model in which α is true, β is also true
 - $\alpha \models \beta$ if and only if $M(\alpha) \subseteq M(\beta)$.
 - + α is a stronger assertion than β
- Example: X = 0 = XY = 0 XY=0 < X=0

14

Inference: entailment

- Recall: $\alpha \models \beta$ means that the α -worlds are a subset of the β -worlds
 - Models(α) \subseteq Models(β)
- Example: Given $\alpha = \neg Q \land R \land S \land W$, $\beta = \neg Q$

• Then α **|=** β

The Wumpus World

- Partially observable environment
- Sensors
 - Breeze, Stench, Glitter, Bump, Scream
- Percepts are 5-tuple: if there is a stench and a breeze, but no glitter, bump, or scream
 - [Stench, Breeze, None, None, None]
- Performace measure
 - +1000 for exiting the cave with the gold
 - -1000 for falling into a pit or being eaten
 - –1 for each action taken
 - -10 for using up the arrow

The Wumpus World

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 OK	2,2	3,2	4,2
1,1 A OK	2,1 OK	3,1	4,1

= Agent = Breeze = Glitter, Gold = Safe square = Pit = Stench = Visited = Wumpus
= vvumpus

(a)

Breeze

PIT

Breeze

Breeze

4

Stench S

4

The Wumpus World

1,4	2,4	3,4	4,4
^{1,3} w!	2,3	3,3	4,3
1,2A S OK	2,2 OK	3,2	4,2
1,1 V OK	^{2,1} B V OK	^{3,1} P!	4,1

Α	= Agent
B	= Breeze
G	= Glitter, Gold
OK	= Safe square
Р	= Pit
S	= Stench
V	= Visited
W	= Wumpus

				25
1,4	^{2,4} P?	3,4	2	Stench S
1.0	0.0	0.0	. 1	
^{1,3} W!	2,3 A S G	^{3,3} P?		1
1,2	B 2,2	3,2	4,2	
S V	V		,	
OK	OK			
1,1 V	2,1 B	^{3,1} P!	4,1	
OK	V OK			

SSSSSS =Breeze PIT =Breeze SSSSSS =Breeze =Breeze =Breeze =Breeze =Breeze =Breeze =Breeze =Breeze =Breeze =Breeze

Logic

- Wumpus world example: the agent has visited [1, 1] and [2, 1]
 - 8 possible models for pits in the neighboring squares
 - α₁ = "No pit in [1, 2]"
 - α₂ = "No pit in [2,2]"

Logic

- Wumpus world example: the agent has visited [1, 1] and [2, 1]
 - 8 possible models for pits in the neighboring squares
 - α₁ = "No pit in [1, 2]"
 - α₂ = "No pit in [2,2]"

• If KB is true in the real-world, then any sentence derived from KB is also true in the real world

Propositional Logic Syntax

- Atomic sentences (Literal): single proposition symbol, e.g., True, False, $W_{\rm 1,3}$
- Complex sentences are formed form simpler sentences using logical connectives

 $\begin{array}{rcl} Sentence & \rightarrow & AtomicSentence \mid ComplexSentence\\ AtomicSentence & \rightarrow & True \mid False \mid P \mid Q \mid R \mid \dots\\ ComplexSentence & \rightarrow & (Sentence)\\ & \mid & \neg Sentence\\ & \mid & Sentence \wedge Sentence\\ & \mid & Sentence \vee Sentence\\ & \mid & Sentence \Leftrightarrow Sentence\\ & \mid & Sentence \Leftrightarrow Sentence\end{array}$

Operator Precedence : $\neg, \land, \lor, \Rightarrow, \Leftrightarrow$

Propositional logic syntax

- Given: a set of proposition symbols {X₁, X₂, ..., X_n}
 - we often add True and False for convenience
- X_i is a sentence
- NOT: If α is a sentence then $\neg \alpha$ is a sentence
- AND: If α and β are sentences then $\alpha \wedge \beta$ is a sentence
- OR: If α and β are sentences then $\alpha \lor \beta$ is a sentence
- Implies: If α and β are sentences then $\alpha \Rightarrow \beta$ is a sentence
- IFF: If α and β are sentences then $\alpha \Leftrightarrow \beta$ is a sentence
- And p.s. there are no other sentences!

Propositional logic semantics

- Let m be a model assigning true or false to $\{X_1, X_2, ..., X_n\}$
- If α is a symbol then its truth value is given in m
- $\neg \alpha$ is true in m iff α is false in m
- $\alpha \wedge \beta$ is true in m iff α is true in m and β is true in m
- $\alpha \lor \beta$ is true in m iff α is true in m or β is true in m
- $\alpha \Rightarrow \beta$ is true in m iff α is false in m or β is true in m (i.e., $\beta \lor \neg \alpha$)
- $\alpha \Leftrightarrow \beta$ is true in m iff $\alpha \Rightarrow \beta$ is true in m and $\beta \Rightarrow \alpha$ is true in m

Р	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Inference: proofs

- Method 1: model-checking
 - Enumerates all possible models and checks for every possible world: if α (KB) is true, make sure that β is true too

• $M(\alpha) \subseteq M(\beta)$; $M(KB) \subseteq M(\beta)$

- OK for propositional logic (finitely many worlds); not easy for firstorder logic
- Method 2: theorem-proving
 - Search for a sequence of proof steps (applications of inference rules) leading from α to β
 - E.g., from $P \land (P \Rightarrow Q)$, infer Q by Modus Ponens

Inference: proofs

- A proof is a demonstration of entailment between α and β
 - Have a set of formulas and want to check the truth of some conclusion based on the given formulas
- Sound algorithm: everything it claims to prove is in fact entailed
- Complete algorithm: everything that is entailed can be proved

Wumpus World KB

Partially observable environment

• Symbols

 $P_{x,y}$ is true if there is a pit in [x, y]. $W_{x,y}$ is true if there is a wumpus in [x, y], dead or alive. $B_{x,y}$ is true if there is a breeze in [x, y]. $S_{x,y}$ is true if there is a stench in [x, y]. $L_{x,y}$ is true if the agent is in location [x, y].

Wumpus World KB

- Initial state R1 : ¬P_{1,1}
- Sensor Model state facts about how percepts arise
 - <Percept variable (at t)> <> <some condition on world (at t)>
 - R2 : $B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})$
 - R3 : $B_{2,1} \Leftrightarrow (P_{1,1} \lor P_{2,2} \lor P_{3,1})$
 - Note: True in all wumpus worlds
- The breeze percepts for the first two squares visited
 - R4 : ¬B_{1.1}
 - $L_{1,1} \land Breeze \Rightarrow B_{1,1}$
 - R5 : B_{2,1}
 - M (KB) = ∩_{Ri ∈ KB} M(Ri)

How many possible worlds?

- The symbols are $\mathsf{B}_{1,1},\,\mathsf{B}_{2,1},\,\mathsf{P}_{1,1},\,\mathsf{P}_{1,2},\,\mathsf{P}_{2,1},\,\mathsf{P}_{2,2},\,\text{and}\,\,\mathsf{P}_{3,1}$
- 7 symbols => 2⁷ = 128 possible worlds (models)
 - With just 80 symbols there are $2^{80}\simeq 10^{21}$ possible models!
- KB is True in 3 of these
- And $\neg P1,2$ is True in all three
- Propositional entailment is **co-NP-complete**
 - Inference algorithms for propositional logic have exponential worst case complexity in the size of the input

Inference: Truth table enumeration

$B_{1,1}$	<i>B</i> _{2,1}	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_1	R_2	R_3	R_4	R_5	KB
false	false	false	false	false	false	false	true	true	true	true	false	false
false	false	false	false	false	false	true	true	true	false	true	false	false
:	:	:	:	:	:	:	:	:	:	:	:	:
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true	true	true	true	true	true	<u>true</u>
false	true	false	false	false	true	false	true	true	true	true	true	<u>true</u>
false	true	false	false	false	true	true	true	true	true	true	true	true
false	true	false	false	true	false	false	true	false	false	true	true	false
:	:	:	:	:	:	:	:	:	:	:	:	:
true	true	true	true	true	true	true	false	true	true	false	true	false

Propositional logic semantics in code function PL-TRUE?(α ,model) returns true or false if α is a symbol then return Lookup(α , model) if Op(α) = \neg then return not(PL-TRUE?(Arg1(α),model)) if Op(α) = \wedge then return and(PL-TRUE?(Arg1(α),model), PL-TRUE?(Arg2(α),model))

etc.

Example: $P_{1,1} \land (P_{2,2} \lor P_{3,1}) \rightarrow T \land (F \lor T) = T \land T = T$

Propositional theorem proving

- Recall: Theorem proving refers to searching for a sequence of proof steps (i.e., applications of inference rules) leading from α to β
- Sound algorithm: everything it derives is in fact entailed
- Complete algorithm: every that is entailed can be derived

Some reasoning tasks

- Localization with a map and local sensing:
 - Given an initial KB, plus a sequence of percepts and actions, where am I?
- Mapping with a location sensor:
 - Given an initial KB, plus a sequence of percepts and actions, what is the map?
- Simultaneous localization and mapping:
 - Given ..., where am I and what is the map?
- Planning:
 - Given ..., what action sequence is guaranteed to reach the goal?
- ALL OF THESE USE THE SAME KB AND THE SAME ALGORITHM!

Logical equivalences

• α and β are logically equivalent, $\alpha \equiv \beta$, if $\alpha \models \beta$ and $\beta \models \alpha$

 $(\alpha \wedge \beta) \equiv (\beta \wedge \alpha)$ commutativity of \wedge $(\alpha \lor \beta) \equiv (\beta \lor \alpha)$ commutativity of \lor $((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma))$ associativity of \wedge $((\alpha \lor \beta) \lor \gamma) \equiv (\alpha \lor (\beta \lor \gamma))$ associativity of \lor $\neg(\neg \alpha) \equiv \alpha$ double-negation elimination $(\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha)$ contraposition $(\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta)$ implication elimination $(\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$ biconditional elimination $\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$ De Morgan $\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$ De Morgan $(\alpha \land (\beta \lor \gamma)) \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma))$ distributivity of \land over \lor $(\alpha \lor (\beta \land \gamma)) \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma))$ distributivity of \lor over \land

Inference rules

- Chain of conclusions
- Modus ponens (mode that affirms)
 - Given:
 - (WumpusAhead \land WumpusAlive) \Rightarrow Shoot
 - Then infer:
 - Shoot
- And-elimination

Both are sound but not complete. Consider $\{\} \Rightarrow P \lor \neg P$

Logical equivalence rules

Inference example

- Starting with KB containing R1 to R5, prove ¬P_{1,2}
- Biconditional elimination to R2:
 - R6 : (B1,1 \Rightarrow (P1,2 \lor P2,1)) \land ((P1,2 \lor P2,1) \Rightarrow B1,1).
- And-Elimination to R6:
 - R7 : ((P1,2 \lor P2,1) \Rightarrow B1,1) .

$$\frac{\alpha \wedge \beta}{\alpha}$$

- Logical equivalence for contrapositives gives
 R8 : (¬B1,1 ⇒ ¬(P1,2 ∨ P2,1)).
- Modus Ponens with R8 and the percept R4 (i.e., ¬B1,1) gives
 R9 : ¬(P1,2 ∨ P2,1).
- Finally, De Morgan's rule gives the conclusion
 - R10 : ¬P1,2 ∧ ¬P2,1.
- Neither [1,2] nor [2,1] contains a pit!

- Every sentence can be expressed as a conjunction of clauses
- Each clause is a disjunction of literals
- Each literal is a symbol or a negated symbol
- Example: $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$

- Conversion to CNF of $B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})$
- Eliminate \Leftrightarrow , replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$.
 - $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$.
- Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$:
 - $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$.
- CNF requires to appear in literals. Moving inwards:
 - $\neg(\neg \alpha) \equiv \alpha$ (double-negation elimination)
 - $\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$ (De Morgan)
 - $\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$ (De Morgan)

- In the example, we require one application of the last rule:
 - (¬B_{1,1}∨P_{1,2}∨P_{2,1})∧((¬P_{1,2}∧¬P_{2,1})∨B_{1,1}).

- Now we have a sentence containing nested ∧ and ∨ operators applied to literals.
- Apply the distributive law distributing V over A wherever possible:
 - (¬B1,1 vP1,2 vP2,1)∧(¬P1,2 vB1,1)∧(¬P2,1 vB1,1)

 $CNFSentence \rightarrow Clause_1 \wedge \cdots \wedge Clause_n$ Clause \rightarrow Literal₁ $\lor \cdots \lor$ Literal_m Fact \rightarrow Symbol *Literal* \rightarrow *Symbol* $|\neg$ *Symbol* Symbol $\rightarrow P \mid Q \mid R \mid \dots$ HornClauseForm \rightarrow DefiniteClauseForm | GoalClauseForm DefiniteClauseForm \rightarrow Fact | (Symbol₁ $\wedge \cdots \wedge$ Symbol₁) \Rightarrow Symbol $GoalClauseForm \rightarrow (Symbol_1 \land \cdots \land Symbol_l) \Rightarrow False$

Satisfiability and entailment

- A sentence is satisfiable if it is true in at least one model
 - Called the SAT problem
 - First NP-Complete problem (Cook-Levin Theorem)
 - (P $\vee \neg$ Q) \wedge (\neg P \vee Q) $\,$ is satisfiable (P = T, Q = T) $\,$
 - $P \wedge \neg P$ is unsatisfiable
- A sentence is a tautology if it is true in all models
 - E.g., $P \lor \neg P$
- α is a tautology if $\neg \alpha$ is unsatisfiable
- $\alpha \models \beta$ iff $\alpha \land \neg \beta$ is unsatisfiable

Satisfiability and entailment

- Suppose we have a hyper-efficient SAT solver (WARNING: NP-COMPLETE). How can we use it to test entailment?
 - α **|=** β

iff $\alpha \Rightarrow \beta$ is true in all worlds iff $\neg(\alpha \Rightarrow \beta)$ is false in all worlds iff $\alpha \land \neg\beta$ is false in all worlds, i.e., unsatisfiable

- So, add the negated conclusion to what you know, test for (un)satisfiability; also known as reductio ad absurdum
- Is KB \cup { $\neg\beta$ } satisfiable? If no, KB |= β
- Efficient SAT solvers operate on conjunctive normal form (CNF)

- Unit resolution $A \lor B \lor \neg C, \neg A \lor D$ $B \lor \neg C \lor D$
- The resolution inference rule takes sentences in CNF and negation of query: (KB \wedge $\neg\alpha$) is converted into CNF
- The resolution rule is applied to the resulting clauses
 - Each pair containing complementary literals is resolved
 - The new clause is added to the set if it is not already present
- Until:
 - There are no new clauses that can be added: KB does not entail $\boldsymbol{\alpha}$
 - Or, two clauses resolve to yield the empty clause: KB $\models \alpha$

The agent returns from [2,1] and goes to [1,2], where it perceives a stench, but no breeze.

- Additions to KB:
 - R11 : ¬B1,2
 - R12 : B1,2 ⇔ (P1,1 ∨ P2,2 ∨ P1,3)
- Inferences:
 - R13 : ¬P2,2
 - R14 : ¬P1,3

- Biconditional elimination to R3 and Modus Ponens with R5: R15 : P1,1 \vee P2,2 \vee P3,1 .
- Unit resolutions:
- The literal —P2,2 resolves with P2,2 to give the resolvent R16 : P1,1 \vee P3,1 .
- Similarly, the literal ¬P1,1 in R1 resolves with P1,1 in R16 to give R17 : P3,1

function PL-RESOLUTION(*KB*, α) **returns** *true* or *false* **inputs**: *KB*, the knowledge base, a sentence in propositional logic α , the query, a sentence in propositional logic

clauses \leftarrow the set of clauses in the CNF representation of $KB \land \neg \alpha$ *new* $\leftarrow \{\}$ **while** *true* **do**

for each pair of clauses C_i , C_j in clauses do resolvents \leftarrow PL-RESOLVE (C_i, C_j) if resolvents contains the empty clause then return true $new \leftarrow new \cup resolvents$ if $new \subseteq clauses$ then return false $clauses \leftarrow clauses \cup new$

- Resolution is complete for propositional logic
- More powerful than modus ponens
- Exponential time in the worst case

Simple theorem proving: Forward chaining

- Forward chaining applies Modus Ponens to generate new facts:
 - Given $X_1 \wedge X_2 \wedge ... X_n \Rightarrow Y$ and $X_1, X_2, ..., X_n$, infer Y
 - Given $L_{1,1}~\wedge$ Breeze $~\Rightarrow$ $B_{1,1}$, $L_{1,1}$ and Breeze, infer $B_{1,1}$
- Forward chaining keeps applying this rule, adding new facts, until nothing more can be added
- Requires KB to contain only Horn clauses
 - At-most one positive literal
- Runs in linear time using two simple tricks:
 - Each symbol X_i knows which rules it appears in
 - Each rule keeps count of how many of its premises are not yet satisfied

Simple theorem proving: Forward chaining

Forward chaining algorithm: Details

```
function PL-FC-ENTAILS?(KB, q) returns true or false
  count \leftarrow a table, where count [c] is the number of symbols in c's
             premise
  inferred \leftarrow a table, where inferred[s] is initially false for all s
  queue \leftarrow a queue of symbols, initially symbols known to be true in KB
  // Some editions use "agenda" to refer to the queue
  while queue is not empty do
        p ← Pop(queue)
        if p = q then return true
if inferred[p] = false then
inferred[p]←true
             for each clause c in KB where p is in c.premise do
                   decrement count[c]
                   if count[c] = 0 then add c.conclusion to queue
  return false
```

Properties of forward chaining

- Data-driven reasoning: reasoning starts with known data
 - Can be used to arrive at conclusions without specific query
- Theorem: FC is sound and complete for definite-clause KBs
- Soundness of FC follows from soundness of Modus Ponens
- Backward chaining
 - Starts with the query and works backwards
 - Useful for goal-directed reasoning
 - Where is the Wumpus?
 - Faster than linear in KB size since only the relevant sentences are checked

Properties of forward chaining

- Completeness proof:
 - FC reaches a fixed point where no new atomic sentences are derived
 - Consider the final set of known-to-be-true symbols as a model m, other ones false
 - Every clause in the original KB is true in m

Proof: Suppose a clause $a_1 \land ... \land a_k \Rightarrow b$ is false in m Then $a_1 \land ... \land a_k$ is true in m and b is false in m Therefore the algorithm has not reached a fixed point!

- Hence **m** is a model of KB
- If KB = q, q is true in every model of KB, including m

Solving SAT Problems

- Problem:
 - Is a given propositional formula satisfiable?
 - If yes, produce a model.
- Examples:
 - (P ∨ ¬Q) ∧ (¬P ∨ Q)? Yes, (P = T, Q = T)
 - P ∧ ¬P? No
- SAT is a kind of CSP where the domain is restricted to T and F
- How to solve SAT problems?
 - Truth table enumeration though complete but not efficient
 - How can we make it faster?

Solving SAT Problems

- Better: partial assignment tree search with backtracking
 - A $\lor \neg$ B, \neg A \lor B, \neg A $\lor \neg$ B, A \lor B \lor C

- How can we make it even faster?
 - CNF + Search + Backtracking + Inference (+ Heuristics)

Efficient SAT solvers

- DPLL (Davis-Putnam-Logemann-Loveland, 1962) algorithm is the core of modern solvers
- Recursive depth-first search over models with some extras
 - Early termination: stop if
 - all clauses are satisfied; e.g., (A \vee B) \wedge (A \vee \neg C) is satisfied by {A=true}
 - any clause is falsified; e.g., $(A \lor B) \land (A \lor \neg C)$ is falsified by {A=false, B=false}
 - Pure literals: if all occurrences of a symbol in as-yet-unsatisfied clauses have the same sign, then give the symbol that value
 - E.g., A is pure and positive in (A \vee B) \wedge (A \vee \neg C) \wedge (C \vee \neg B) so set it to true

Efficient SAT solvers

- Unit clauses: if a clause is left with a single literal, set symbol to satisfy clause
 - E.g., if A=false, (A ∨ B) ∧ (A ∨ ¬C) becomes (false ∨ B) ∧ (false ∨ ¬C), i.e. (B) ∧ (¬C)
 - Satisfying the unit clauses often leads to further propagation, new unit clauses

DPLL algorithm

if P is non-null then return DPLL(clauses, symbols – P, model ∪ {P=value})

P ← First(symbols); rest ← Rest(symbols) return or(DPLL(clauses, rest, model ∪ {P=true}), DPLL(clauses, rest, model ∪ {P=false}))

Efficiency

- Naïve implementation of DPLL: solves ~100 variables
- Extras:
 - Smart variable and value ordering
 - Divide and conquer
 - Caching unsolvable subcases as extra clauses to avoid redoing them
 - Cool indexing and incremental recomputation tricks so that every step of the DPLL algorithm is efficient (typically O(1))
 - Index of clauses in which each variable appears +ve/-ve
 - Keep track number of satisfied clauses, update when variables assigned
 - Keep track of number of remaining literals in each clause
- Real implementation of DPLL: solves ~100 Million variables

Probability of satisfiability

- The probability of satisfiability of overconstrained instances (i.e., large clause to symbol ratio) tends to 0
 - The solutions are densely distributed in underconstrained ones
 - The transition is sharp

SAT solvers in practice

- Circuit verification: does this VLSI circuit compute the right answer?
- Software verification: does this program compute the right answer?
- Software synthesis: what program computes the right answer?
- **Protocol verification**: can this security protocol be broken?
- Protocol synthesis: what protocol is secure for this task?
- Lots of **combinatorial problems**: what is the solution?
- Planning: how can I kill the wumpus and get the gold?

Summary

- One possible agent architecture: knowledge + inference
- Logics provide a formal way to encode knowledge
 - A logic is defined by: syntax, set of possible worlds, truth condition
- A simple KB for an agent covers the initial state, sensor model, and transition model
- Logical inference computes entailment relations among sentences, enabling a wide range of tasks to be solved

Summary

- Theorem provers apply inference rules to sentences
 - Forward chaining applies modus ponens with definite clauses; linear time
 - Resolution is complete for PL but exponential time in the worst case
- SAT solvers based on DPLL provide incredibly efficient inference
- Logical agents can do localization, mapping, SLAM, planning (and many other things) just using one generic inference algorithm on one knowledge base

- Reading: Chapter 7
- Assignments: WalkSAT, SATPlan, PS 5, logic.ipynb
- Next: First order logic, Chapter 8
- Mid-Term Project Evaluation on Oct 23