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Goal: Design knowledge-based agents that use reasoning over 
an internal representation of knowledge to decide the actions.

Topics
• Basic concepts of knowledge, logic, reasoning

• Knowledge-Based Agents

• Propositional Logic : syntax and semantics

• Inference in Propositional Logic
• Inference by model checking

• Inference by theorem proving

• Wumpus world agent using propositional logic
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Knowledge-Based (KB) Agents

• Knowledge can be used to make good decisions, i.e., intelligent 
behavior
• In early 1960s, McCarthy introduced the idea of using logic to 

determine actions in his paper “Programs with Common Sense”

• Rational agents can be defined by the knowledge they possess 
rather than the programs they run [Newell, “The knowledge level,” 1982]

• Problem solving agents are inflexible. A good path finding 
agent is useful for finding a path but not generalizable to any 
other task
• They don’t know general facts: the sun sets in the west (strong 

glaze if driving west), mileage depends on speed, …

• The only choice for representing what it knows in a partially 
observable environment is to list all possible concrete states

4



Knowledge

• A KB agent uses logic to represent knowledge 
• These agents can combine and recombine information

• Knowledge is contained in agents in the form of sentences in a 
knowledge representation language that are stored in a 
knowledge base
• Knowledge base = set of sentences in a formal language

• Declarative approach to building an agent
• Tell : add new sentence (what it needs to know) to the KB

• Can also learn the knowledge

• Ask : the agent queries the KB what to do
• Answers must be consistent with the KB
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Knowledge

• A KB agent is composed of a knowledge base and an inference 
mechanism

• Agents can be viewed at the knowledge level i.e., what they 
know, regardless of how implemented (Newell)

• A single inference algorithm can answer any answerable 
question

Knowledge base

Inference engine

Domain-specific facts

Generic code



KB Agents 

• Agents acquire knowledge through perception, learning, 
language
• Knowledge of the effects of actions (“transition model”)

• Knowledge of how the world affects sensors (“sensor model”)

• Knowledge of the current state of the world

• Can keep track of a partially observable world

• Can formulate plans to achieve goals

7



KB Agents 
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Logic

• Logic has its origins in ancient Greek philosophy and 
mathematics. 
• Plato discussed the syntactic structure of sentences, their truth 

and falsity, their meaning, and the validity of logical arguments. 

• The first known systematic study of logic was Aristotle’s Organon

• KB consists of sentences formed according to the syntax
• Syntax: What sentences are valid?

• Example: x + y = 3
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Logic

• Semantics determines the truth of a sentence (only true or 
false) in a possible world or model
• What do the sentences mean?

• What are the possible worlds?

• Which sentences are true in which worlds? (i.e., definition of truth)

• x + y = 3 and y + x = 3 have different syntax but the same 
semantics
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Different kinds of logic

• Propositional logic
• Syntax: P  (Q  R);        X1  (Raining  Sunny)

• Possible world: {P=true, Q=true, R=false, S=true} or 1101

• Semantics:    is true in a world iff is  true and  is true (etc.)

• First-order logic
• Syntax: x y P(x, y)  Q(Joe,f(x))  f(x)=f(y)

• Possible world: Objects o1, o2, o3; P holds for <o1,o2>; Q holds for 
<o3>; f(o1)=o1; Joe=o3; etc.

• Semantics: () is true in a world if  = oj and  holds for oj; etc.



Different kinds of logic
• Relational databases

• Syntax: ground relational sentences, e.g., Sibling(Ali, Bo)
• Possible worlds: (typed) objects and (typed) relations
• Semantics: sentences in the DB are true, everything else is false

• Cannot express disjunction, implication, universals, etc.
• Query language (SQL etc.) typically some variant of first-order logic
• Often augmented by first-order rule languages, e.g., Datalog

• Knowledge graphs (roughly: relational DB + ontology of types and 
relations)
• Google Knowledge Graph: 5 billion entities, 500 billion facts, >30% of 

queries
• Facebook network: 2.8 billion people, trillions of posts, maybe 

quadrillions of facts



• Satisfaction: If a sentence  is true in model m, we say that m 
satisfies  or sometimes m is a model of .
• We use the notation M() to mean the set of all models of .

• Entailment: Refers to a sentence following logically from another

•  |=  (or,  ⊢ ) denotes  “ entails ” or “ follows from ”

•  |=  iff in every model in which  is true,  is also true

•  |=  if and only if M() ⊆ M() .

•  is a stronger assertion than 

• Example: X = 0 |= XY = 0

Inference
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X = 0

Y = 0

X = 0                       X Y = 0

Y = 1

X = 1

XY=0 |= X=0



Inference: entailment

• Recall:  |=  means that the  -worlds are a subset of the 
-worlds
• Models()  Models()

• Example: Given  = Q  R  S  W,  = Q

• Then  |= 







The Wumpus World

• Partially observable environment

• Sensors
• Breeze, Stench, Glitter, Bump, Scream

• Percepts are 5-tuple: if there is a 
stench and a breeze, but no glitter, 
bump, or scream 
• [Stench, Breeze, None, None, None]

• Performace measure
• +1000 for exiting the cave with the gold 

• –1000 for falling into a pit or being eaten

• –1 for each action taken

• –10 for using up the arrow 16



The Wumpus World
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The Wumpus World
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Logic

• Wumpus world example: the agent has visited [1, 1] and [2, 1]
• 8 possible models for pits in the neighboring squares

• α1 = “No pit in [1, 2]” 

• α2 = “No pit in [2,2]”
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Logic

• Wumpus world example: the agent has visited [1, 1] and [2, 1]
• 8 possible models for pits in the neighboring squares

• α1 = “No pit in [1, 2]” 

• α2 = “No pit in [2,2]”
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KB |= α1,    KB |= α2 



Logic
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• If KB is true in the real-world, then any sentence derived from 
KB is also true in the real world



Propositional Logic Syntax

• Atomic sentences (Literal): single proposition symbol, e.g., True, 
False, W1,3

• Complex sentences are formed form simpler sentences using 
logical connectives
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Propositional logic syntax

• Given: a set of proposition symbols {X1, X2, …, Xn} 
• we often add True and False for convenience

• Xi is a sentence

• NOT: If  is a sentence then  is a sentence

• AND: If  and  are sentences then    is a sentence

• OR: If  and  are sentences then    is a sentence

• Implies: If  and  are sentences then    is a sentence

• IFF: If  and  are sentences then    is a sentence

• And p.s. there are no other sentences!



Propositional logic semantics

• Let m be a model assigning true or false to {X1, X2, …, Xn} 

• If  is a symbol then its truth value is given in m

•  is true in m iff  is false in m

•    is true in m iff  is true in m and  is true in m

•    is true in m iff  is true in m or  is true in m

•    is true in m iff  is false in m or  is true in m (i.e.,   )

•    is true in m iff    is true in m and    is true in m
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Inference: proofs

• Method 1: model-checking
• Enumerates all possible models and checks for every possible 

world: if  (KB) is true, make sure that  is true too
• M() ⊆ M(); M(KB) ⊆ M()

• OK for propositional logic (finitely many worlds); not easy for first-
order logic

• Method 2: theorem-proving
• Search for a sequence of proof steps (applications of inference 

rules) leading from  to 

• E.g., from P  (P  Q), infer Q by Modus Ponens



Inference: proofs

• A proof is a demonstration of entailment between  and 
• Have a set of formulas and want to check the truth of some 

conclusion based on the given formulas

• Sound algorithm: everything it claims to prove is in fact entailed

• Complete algorithm: everything that is entailed can be proved



Wumpus World KB

• Partially observable environment

• Symbols
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Wumpus World KB

• Initial state R1 : ￢P1,1

• Sensor Model - state facts about how percepts arise
• <Percept variable (at t)>  <some condition on world (at t)>

• R2 : B1,1 ⇔ (P1,2 ∨ P2,1) 

• R3 : B2,1 ⇔ (P1,1 ∨ P2,2 ∨ P3,1) 
• Note: True in all wumpus worlds

• The breeze percepts for the first two squares visited
• R4 : ￢B1,1

• L1,1  Breeze  B1,1

• R5 : B2,1

• M (KB) = ∩Ri ∈ KB M(Ri)
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How many possible worlds?
• The symbols are B1,1, B2,1, P1,1, P1,2, P2,1, P2,2, and P3,1

• 7 symbols => 27 = 128 possible worlds 
(models)
• With just 80 symbols there are 280 ≃ 1021

possible models!

• KB is True in 3 of these

• And P1,2 is True in all three

• Propositional entailment is co-NP-complete
• Inference algorithms for propositional logic 

have exponential worst case complexity in the 
size of the input



Inference: Truth table enumeration



Propositional logic semantics in code

function PL-TRUE?(,model) returns true or false

if  is a symbol then return Lookup(, model)

if Op() =  then return not(PL-TRUE?(Arg1(),model))

if Op() =  then return and(PL-TRUE?(Arg1(),model), 

PL-TRUE?(Arg2(),model))

etc.

Example: P1,1  (P2,2 ∨ P3,1) → T  (F ∨ T) = T  T  = T



Propositional theorem proving

• Recall: Theorem proving refers to searching for a sequence of 
proof steps (i.e., applications of inference rules) leading from 
to 

• Sound algorithm: everything it derives is in fact entailed

• Complete algorithm: every that is entailed can be derived
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Some reasoning tasks
• Localization with a map and local sensing:

• Given an initial KB, plus a sequence of percepts and actions, where 
am I?

• Mapping with a location sensor:
• Given an initial KB, plus a sequence of percepts and actions, what 

is the map?

• Simultaneous localization and mapping:
• Given …, where am I and what is the map?

• Planning:
• Given …, what action sequence is guaranteed to reach the goal?



Logical equivalences

•  and  are logically equivalent,  ≡, if  |=  and  |= 
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Inference rules

• Chain of conclusions

• Modus ponens (mode that affirms)
• Given:

• (WumpusAhead ∧ WumpusAlive) ⇒ Shoot

• (WumpusAhead ∧ WumpusAlive)

• Then infer: 
• Shoot

• And-elimination

Both are sound but not complete. Consider { }  P ∨ ¬P

• Logical equivalence rules

41



Inference example
• Starting with KB containing R1 to R5, prove ￢P1,2

• Biconditional elimination to R2:
• R6 : (B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1) ⇒ B1,1) .

• And-Elimination to R6:
• R7 : ((P1,2 ∨ P2,1) ⇒ B1,1) .

• Logical equivalence for contrapositives gives
• R8 : (￢B1,1 ⇒￢(P1,2 ∨ P2,1)) .

• Modus Ponens with R8 and the percept R4 (i.e., ￢B1,1) gives
• R9 : ￢(P1,2 ∨ P2,1) .

• Finally, De Morgan’s rule gives the conclusion
• R10 : ￢P1,2 ∧￢P2,1 .

• Neither [1,2] nor [2,1] contains a pit!
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Conjunctive normal form (CNF)

• Every sentence can be expressed as a conjunction of 
clauses

• Each clause is a disjunction of literals

• Each literal is a symbol or a negated symbol

• Example: (￢B1,1 ∨P1,2 ∨P2,1)∧(￢P1,2 ∨B1,1)∧(￢P2,1 ∨B1,1) 



Conjunctive normal form (CNF)

Conversion to CNF of B1,1 ⇔ (P1,2 ∨ P2,1)

• Eliminate ⇔, replacing α⇔β with (α ⇒ β)∧(β ⇒ α).
• (B1,1 ⇒ (P1,2 ∨P2,1))∧((P1,2 ∨P2,1) ⇒ B1,1) .

• Eliminate ⇒, replacing α⇒β with ￢α∨β:
• (￢B1,1 ∨P1,2 ∨P2,1)∧(￢(P1,2 ∨P2,1)∨B1,1) .

• CNF requires ￢ to appear in literals. Moving ￢ inwards:
• ￢(￢α) ≡ α (double-negation elimination)

• ￢(α∧β) ≡ (￢α∨￢β) (De Morgan)

• ￢(α∨β) ≡ (￢α∧￢β) (De Morgan)



Conjunctive normal form (CNF)

• In the example, we require one application of the last rule:
• (￢B1,1 ∨P1,2 ∨P2,1)∧((￢P1,2 ∧￢P2,1)∨B1,1) .

• Now we have a sentence containing nested ∧ and ∨
operators applied to literals. 

• Apply the distributive law distributing ∨ over ∧ wherever 
possible:
• (￢B1,1 ∨P1,2 ∨P2,1)∧(￢P1,2 ∨B1,1)∧(￢P2,1 ∨B1,1) 



Conjunctive normal form (CNF)

Replace    by  v 



Satisfiability and entailment

• A sentence is satisfiable if it is true in at least one model
• Called the SAT problem

• First NP-Complete problem (Cook-Levin Theorem)

• (P  Q)  (P  Q)  is satisfiable (P = T, Q = T)

• P  P is unsatisfiable

• A sentence is a tautology if it is true in all models
• E.g., P  P

•  is a tautology if  is unsatisfiable

•  |=  iff    is unsatisfiable



Satisfiability and entailment

• Suppose we have a hyper-efficient SAT solver (
). How can we use it to test entailment?

•  |= 

iff    is true in all worlds

iff (  ) is false in all worlds

iff    is false in all worlds, i.e., unsatisfiable

• So, add the negated conclusion to what you know, test for 
(un)satisfiability; also known as reductio ad absurdum

• Is KB ∪ {  } satisfiable? If no, KB |= 

• Efficient SAT solvers operate on conjunctive normal form (CNF)



Proof by Resolution (Robinson, 1965)

• Unit resolution      A  B ￢C, ￢A  D

B ￢C  D

• The resolution inference rule takes sentences in CNF and 
negation of query: (KB ∧￢) is converted into CNF

• The resolution rule is applied to the resulting clauses
• Each pair containing complementary literals is resolved

• The new clause is added to the set if it is not already present

• Until:
• There are no new clauses that can be added: KB does not entail 

• Or,  two clauses resolve to yield the empty clause: KB |= 



Proof by Resolution (Robinson, 1965)

The agent returns from [2,1] and goes to [1,2], where it perceives 
a stench, but no breeze. 

• Additions to KB:
• R11 : ￢B1,2

• R12 : B1,2 ⇔ (P1,1 ∨ P2,2 ∨ P1,3)

• Inferences:
• R13 : ￢P2,2

• R14 : ￢P1,3



Proof by Resolution (Robinson, 1965)

• Biconditional elimination to R3 and Modus Ponens with R5:

R15 : P1,1 ∨ P2,2 ∨ P3,1 .

• Unit resolutions: 

• The literal ￢P2,2 resolves with P2,2 to give the resolvent

R16 : P1,1 ∨ P3,1 .

• Similarly, the literal ￢P1,1 in R1 resolves with P1,1 in R16 to give

R17 : P3,1



Proof by Resolution (Robinson, 1965)



Proof by Resolution (Robinson, 1965)

• Resolution is complete for propositional logic

• More powerful than modus ponens

• Exponential time in the worst case



Simple theorem proving: Forward chaining

• Forward chaining applies Modus Ponens to generate new facts:
• Given X1  X2  … Xn  Y and X1, X2, …, Xn,  infer Y

• Given L1,1  Breeze   B1,1 , L1,1 and Breeze, infer B1,1

• Forward chaining keeps applying this rule, adding new facts, 
until nothing more can be added

• Requires KB to contain only Horn clauses
• At-most one positive literal

• Runs in linear time using two simple tricks:
• Each symbol Xi knows which rules it appears in

• Each rule keeps count of how many of its premises are not yet 
satisfied



Simple theorem proving: Forward chaining

B

Q

P

M

L

A

Queue (or, agenda) = {A, B} initially

≡



Forward chaining algorithm: Details
function PL-FC-ENTAILS?(KB, q) returns true or false

count ← a table, where count[c] is the number of symbols in c’s 
premise

inferred ← a table, where inferred[s] is initially false for all s
queue ← a queue of symbols, initially symbols known to be true in KB
// Some editions use “agenda” to refer to the queue
while queue is not empty do 

p ← Pop(queue)
if p = q then return true 
if inferred[p] = false then 

inferred[p]←true
for each clause c in KB where p is in c.premise do 

decrement count[c] 
if count[c] = 0 then add c.conclusion to queue

return false



Properties of forward chaining

• Data-driven reasoning: reasoning starts with known data
• Can be used to arrive at conclusions without specific query

• Theorem: FC is sound and complete for definite-clause KBs

• Soundness of FC follows from soundness of Modus Ponens

• Backward chaining 
• Starts with the query and works backwards

• Useful for goal-directed reasoning
• Where is the Wumpus?

• Faster than linear in KB size since only the relevant sentences are 
checked



Properties of forward chaining

• Completeness proof:
• FC reaches a fixed point where no new atomic sentences are 

derived 

• Consider the final set of known-to-be-true symbols as a model m, 
other ones false

• Every clause in the original KB is true in m
Proof: Suppose a clause a1... ak  b is false in m
Then a1... ak is true in m and b is false in m
Therefore the algorithm has not reached a fixed point! 

• Hence m is a model of KB

• If KB |= q, q is true in every model of KB, including m



Solving SAT Problems

• Problem:
• Is a given propositional formula satisfiable? 

• If yes, produce a model.

• Examples:
• (P  Q)  (P  Q)? Yes, (P = T, Q = T)

• P  P? No

• SAT is a kind of CSP where the domain is restricted to T and F

• How to solve SAT problems?
• Truth table enumeration - though complete but not efficient

• How can we make it faster?



Solving SAT Problems

• Better: partial assignment tree search with backtracking
• A   B,  A  B,  A   B, A  B  C

• How can we make it even faster?
• CNF + Search + Backtracking + Inference (+ Heuristics)

A ->

B ->

C ->



Efficient SAT solvers

• DPLL (Davis-Putnam-Logemann-Loveland, 1962) algorithm is the 
core of modern solvers

• Recursive depth-first search over models with some extras
• Early termination: stop if 

• all clauses are satisfied; e.g., (A  B)  (A  C) is satisfied by {A=true}

• any clause is falsified; e.g., (A  B)  (A  C) is falsified by {A=false, 
B=false}

• Pure literals: if all occurrences of a symbol in as-yet-unsatisfied 
clauses have the same sign, then give the symbol that value
• E.g., A is pure and positive in (A  B)  (A  C)  (C  B) so set it to 

true



Efficient SAT solvers
• Unit clauses: if a clause is left with a single literal, set symbol to 

satisfy clause
• E.g., if A=false, (A  B)  (A  C) becomes (false  B)  (false  C), 

i.e. (B)  (C)

• Satisfying the unit clauses often leads to further propagation, new unit 
clauses



DPLL algorithm

function DPLL(clauses, symbols, model) returns true or false 
if every clause in clauses is true in model then return true
if some clause in clauses is false in model then return false
P, value ←FIND-PURE-SYMBOL(symbols, clauses, model)
if P is non-null then return DPLL(clauses, symbols – P, 

model ∪ {P=value}) 
P, value ←FIND-UNIT-CLAUSE(clauses, model)
if P is non-null then return DPLL(clauses, symbols – P, 

model ∪ {P=value}) 
P ← First(symbols); rest ← Rest(symbols)
return or(DPLL(clauses, rest, model ∪ {P=true}),

DPLL(clauses, rest, model ∪ {P=false}))



Efficiency
• Naïve implementation of DPLL: solves ~100 variables

• Extras: 
• Smart variable and value ordering 
• Divide and conquer
• Caching unsolvable subcases as extra clauses to avoid redoing 

them
• Cool indexing and incremental recomputation tricks so that every 

step of the DPLL algorithm is efficient (typically O(1))
• Index of clauses in which each variable appears +ve/-ve
• Keep track number of satisfied clauses, update when variables 

assigned
• Keep track of number of remaining literals in each clause

• Real implementation of DPLL: solves ~100 Million variables



Probability of satisfiability

• The probability of satisfiability of overconstrained instances 
(i.e., large clause to symbol ratio) tends to 0
• The solutions are densely distributed in underconstrained ones

• The transition is sharp
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SAT solvers in practice

• Circuit verification: does this VLSI circuit compute the right 
answer?

• Software verification: does this program compute the right 
answer?

• Software synthesis: what program computes the right answer?

• Protocol verification: can this security protocol be broken?

• Protocol synthesis: what protocol is secure for this task?

• Lots of combinatorial problems: what is the solution?

• Planning: how can I kill the wumpus and get the gold?



Summary

• One possible agent architecture: knowledge + inference

• Logics provide a formal way to encode knowledge
• A logic is defined by: syntax, set of possible worlds, truth condition

• A simple KB for an agent covers the initial state, sensor model, and 
transition model

• Logical inference computes entailment relations among sentences, 
enabling a wide range of tasks to be solved



Summary

• Theorem provers apply inference rules to sentences
• Forward chaining applies modus ponens with definite clauses; linear 

time

• Resolution is complete for PL but exponential time in the worst case

• SAT solvers based on DPLL provide incredibly efficient inference

• Logical agents can do localization, mapping, SLAM, planning (and 
many other things) just using one generic inference algorithm on 
one knowledge base 



• Reading: Chapter 7

• Assignments: WalkSAT, SATPlan, PS 5, logic.ipynb

• Next: First order logic, Chapter 8

• Mid-Term Project Evaluation on Oct 23
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