Artificial Intelligence

6. CSP

Shashi Prabh

School of Engineering and Applied Science Ahmedabad University

Contents

Goal: use factored representation of agents to solve problems.

Topics

- Constraint Satisfaction Problem
- Constraint Propagation
- Backtracking Search
- Local Serach

Constraint Satisfaction Problems (CSP)

- We consider factored representation of states
 - A state is a set of variables
- A problem solution is an assignment of values to the state variables where all the constraints on the variables are satisfied
- Why CSP?
 - CSP is a natural formulation in many problems
 - Scheduling, planning, resource allocation, temporal models, control etc.
 - Significant reduction of search space, availability of fast solvers
 - Insight into the problem structure can be used for search speed-up
 - Some intractable atomic search-space problems can be quickly solved as CSP formulation
 - Actions and transition model can be deduced from the formulation

Constraint Satisfaction Problems (CSP)

- A CSP consists of three components (X, D, C):
- Variables X = { x₁, x₂, ..., x_n}
- **Domains** D = {D₁, D₂, ..., D_n}
- Constraints C = {c₁, c₂, ..., c_m}
 - Domain D_i consists of the set of allowable values $\{v_1, \, ..., \, v_k\}$ for each x_i
 - {T, F} for a Boolean variable
 - Constraint c_i consists of a pair (scope, relation)
 - $\langle (x_1, x_2), x_1 \neq x_2 \rangle$ or just $x_1 \neq x_2$
- Goal: Assign values to the variables from their respective domains such that all the constraints are satisfied
 - An assignment that does not violate any constraint is called consistent or legal assignment
 - A solution to a CSP is a complete and consistent assignment

Map coloring

- X = {W, N, S, Q, NSW, V, T}
- D = {r, g, b}
- C = { W \neq N, S \neq N, Q \neq N, W \neq S, S \neq Q, etc}
 - W \neq N means {(r, g), (r, g), (g, r), (g, b), (b, r), (b, g)}
 - Note the reduced search space due to the constraints: 2^5 instead of 3^5
- Can you find one solution?
- In a CSP constraint graph, two variables are connected by an edge if there is a constraint that involves both

Job-Shop Scheduling – Car Assembly

• X is the set of tasks

 $\{Axle_F, Axle_B, Wheel_{RF}, Wheel_{LF}, Wheel_{RB}, Wheel_{LB}, Nuts_{RF}, Nuts_{LF}, Nuts_{RB}, Nuts_{LB}, Cap_{RF}, Cap_{LF}, Cap_{RB}, Cap_{LB}, Inspect\}$

- Values are the start times of tasks: D_i = {0, 1, ..., 30}
- Constraints: precedence constraints and completion times
 - It takes 10 minutes to install an axle:

 $Axle_F + 10 \leq Wheel_{RF};$ $Axle_F + 10 \leq Wheel_{LF};$ $Axle_B + 10 \leq Wheel_{RB};$ $Axle_B + 10 \leq Wheel_{LB}.$

• Axle installations must not overlap in time:

 $(Axle_F + 10 \le Axle_B)$ or $(Axle_B + 10 \le Axle_F)$

• Exercise: CSP formulation of 8-Queens problem

Constraints: AllDiff (F, T, U, W, R, O), F ≠ 0 and

 $O + O = R + 10 \cdot C_1$ $C_1 + W + W = U + 10 \cdot C_2$ $C_2 + T + T = O + 10 \cdot C_3$ $C_3 = F$,

Inference

- State-space search, generating successors as new assignments
- Constraint propagation is an alternative where constraints are enforced locally on the constraint graph
 - Local consistency shrinks the search space by eliminating the inconsistent assignments
 - Used along-with search and/or as a preprocessing step
- Types of local consistency
 - Node consistency
 - Arc consistency
 - Path and K-Consistency
- Global constraints, bounds propagation

Node Consistency

- A node in the constraint graph is node-consistent if all the values in the variable's domain satisfy the variable's unary constraints.
- Example: consider a unary constraint SA ≠ {green}
 - The variable SA with initial domain {red, green, blue} can be made node consistent by eliminating green from its domain, leaving SA with the reduced domain {red, blue}.
- A graph is node-consistent if every variable in the graph is node-consistent.
- Instead of node consistency, one can eliminate domain values inconsistent with unary constraints

Arc Consistency

- A variable is arc-consistent if for every value in its domain, there is some value in the domains of all the variables connected by a binary constraint
- Example: consider the constraint Y = X², $D_X = N$, $D_Y = \{0, 1, 4, 9\}$
 - X is made arc-consistent with Y by restricting $D_X = \{0, 1, 2, 3\}$
- However, arc-consistency is ineffective in the map coloring example
- Algorithm called AC-3 is a widely used arc-consistency algorithm

AC-3 (Mackworth, 1977)

function AC-3(*csp*) **returns** false if an inconsistency is found and true otherwise $queue \leftarrow$ a queue of arcs, initially all the arcs in *csp*

```
while queue is not empty do

(X_i, X_j) \leftarrow \text{POP}(queue)

if REVISE(csp, X_i, X_j) then

if size of D_i = 0 then return false

for each X_k in X_i.NEIGHBORS - \{X_j\} do

add (X_k, X_i) to queue

return true
```

 Initially, each binary constraint inserts two arcs

function REVISE(*csp*, X_i , X_j) returns true iff we revise the domain of X_i *revised* \leftarrow *false* for each x in D_i do if no value y in D_j allows (x,y) to satisfy the constraint between X_i and X_j then delete x from D_i *revised* \leftarrow *true*

return revised ← I

- X_i is being made consistent with X_i
- 0 (c d³) worst case complexity

Path Consistency

- AC does not help with map coloring
 - Does not object to 2-coloring the map
- A two-variable set {X_i, X_j} is path-consistent with respect to a third variable X_m if, for every assignment {X_i = a, X_j =b} consistent with the constraints (if any) on {X_i, X_j}, there is an assignment to X_m that satisfies the constraints on {X_i, X_m} and {X_m, X_j}.
 - Refers to the overall consistency of the path from X_i to X_j with X_m in the middle
- Can infer no valid 2-coloring of the Australia map

Northern Territory

South

Australia

Western

Oueensland

Victoria

Tasmania

New South Wales

K-Consistency

- A CSP is k-consistent if, for any set of k-1 variables and for any consistent assignment to those variables, a consistent value can always be assigned to any kth variable
 - 1-consistency says that, given the empty set, we can make any set of one variable consistent: this is what we called node consistency
 - 2-consistency is the same as arc consistency
 - 3-consistency (binary constraints) is the same as path consistency
- A CSP is strongly k-consistent if it is k-consistent and is also (k-1)-consistent, (k-2), ... all the way down to 1-consistent
 - Can design a greedy algorithm
- CSP is NP-complete
 - K-consistency requires exponential time and space

Global constraints

- A global constraint involves an arbitrary number of variables. It is more efficient to handle these by special-purpose algorithms
- AllDiff: if m variables are involved in an AllDiff constraint, and if n possible distinct values altogether are available, then the constraint cannot be satisfied if m > n
- Atmost: resource constraint
 - Example: no more than 10 personnel are scheduled in total
 - We can detect an inconsistency simply by checking the sum of the minimum values of the current domains

Global constraints

- Bounds propagation: For problems with large integer domains it is usually not efficient to represent the domain of each variable as a large set of integers.
 - Domains can be represented by upper and lower bounds and managed by bounds propagation
- Example:
 - Consider two flights, F1 and F2, for which the planes have capacities 165 and 385, respectively
 - The initial domains for the numbers of passengers are then D1 = [0, 165] and D2 = [0, 385]
 - The additional constraint that the two flights together must carry 450 people can be handled by propagating bounds constraints as D1 = [65, 165] and D2 = [285, 385]

Sudoku

	1	2	3	4	5	6	7	8	9
Α	4	8	3	9	2	1	6	5	7
в	9	6	7	3	4	5	8	2	1
С	2	5	1	8	7	6	4	9	3
D	5	4	8	1	3	2	9	7	6
Е	7	2	9	5	6	4	1	3	8
F	1	3	6	7	9	8	2	4	5
G	3	7	2	6	8	9	5	1	4
н	8	1	4	2	5	3	7	6	9
Т	6	9	5	4	1	7	3	8	2

Exercise: Write CSP formulation!

Backtracking Search

- Search for solution is needed when after constraint propagation there exist variables with multiple possible vlaues
- For a CSP with n variables of domain size d results in a search tree where all the complete assignments are n! dⁿ leaf nodes at depth n
 - The branching factor at the top would be nd, at the next level (n-1) d and so on, but the order of assignments does not matter

Backtracking Search

- Backtracking search progresses via a recursive call
- An unassigned variable is (repeatedly) chosen, a value is assigned and the search progresses to another variable and so on
 - If the search succeeds, the solution is returned
 - If the search fails, the assignment is restored to the previous state, and the next value is tried
- BACKTRACKING-SEARCH keeps only a single representation of a state (assignment) and alters that representation rather than creating new ones

Backtracking Search

function BACKTRACKING-SEARCH(csp) returns a solution or failure
return BACKTRACK(csp, { })

function BACKTRACK(*csp*, *assignment*) **returns** a solution or *failure* if assignment is complete then return assignment $var \leftarrow SELECT-UNASSIGNED-VARIABLE(csp, assignment)$ for each value in ORDER-DOMAIN-VALUES(csp, var, assignment) do if value is consistent with assignment then add {*var* = *value*} to *assignment* $inferences \leftarrow INFERENCE(csp, var, assignment)$ **if** *inferences* \neq *failure* **then** add *inferences* to *csp result* \leftarrow BACKTRACK(*csp*, *assignment*) **if** result \neq failure **then return** result remove *inferences* from *csp* remove {*var* = *value*} from *assignment* **return** *failure*

Improving Backtracking Search

- Backtracking search can be improved using domainindependent heuristics that take advantage of the factored representation of states
- Variable and value ordering heuristics
 - Minimum-remaining-values heuristic
 - Start with F in crypatrithmetic puzzle
 - Degree heuristic largest first
 - Start with SA in Australia map
 - Least constraining value first
 - Values that rule out the fewest choices first

- Forward Checking: Check for arc consistancy upon a variable assignment
 - Upon assignment to X, for each unassigned variable Y that is connected to X by a constraint, delete from Y's domain any value that is inconsistent with the value chosen for X
 - After assigning V =blue, the domain of SA is empty indicating that the partial assignment {WA=red, Q=green, V =blue} is inconsistent with the constraints. At this point the algorithm backtracks.

- Combining the MRV heuristic with forward checking is usually more effective
 - After assigning {WA=red} NT and SA each have two values. MRV will choose one of them first and then the other. After that Q, NSW and V.
- Forward checking incrementally computes the information that the MRV heuristic needs...

- Forward checking doesn't detect all inconsistencies since it does not look ahead far enough
 - In the Q=green row, WA and Q arc-consistent, but both NT and SA are left with blue as their only possible value, which is an inconsistency, since they are neighbors.

- Maintaining Arc Consistency (MAC): After a variable Xi is assigned a value, the inference procedure calls AC-3
 - Instead of a queue of all the arcs, it starts with only the arcs (X_j, X_i) for all X_i that are unassigned variables and are neighbors of X_i
 - If any variable has its domain reduced to the empty set, the call to AC-3 fails which triggers backtracking immediately
- We can see that MAC is strictly more powerful than forward checking unlike MAC, forward checking does not recursively propagate constraints

- Reading: Chapter 6
- Assignments: PS 4, csp.ipynb
- Next: Logical Agents, Chapter 7
- Mid-Term Examination coming up