Artificial Intelligence

6. CSP

Shashi Prabh

School of Engineering and Applied Science
Ahmedabad University

Contents

Goal: use factored representation of agents to solve problems.

Topics
« Constraint Satisfaction Problem
» Constraint Propagation
« Backtracking Search
* Local Serach

Constraint Satisfaction Problems (CSP)

* We consider factored representation of states
» A state is a set of variables

* A problem solution is an assignment of values to the state
variables where all the constraints on the variables are satisfied

* Why CSP?
* CSP is a natural formulation in many problems
* Scheduling, planning, resource allocation, temporal models, control etc.
* Significant reduction of search space, availability of fast solvers
* Insight into the problem structure can be used for search speed-up

* Some intractable atomic search-space problems can be quickly solved
as CSP formulation

* Actions and transition model can be deduced from the formulation

Constraint Satisfaction Problems (CSP)

» A CSP consists of three components (X, D, C):
* Variables X = { x, Xy, ., X,}
« Domains D={D,, D,, .., D}
e Constraints C = {c,, c,, .., ..}
« Domain D, consists of the set of allowable values {v,, .., v,} for each x;
« {T, F} for a Boolean variable
* Constraint c; consists of a pair (scope, relation)
« ((x}, X5), X; # X,) or just x, # X,
» Goal: Assign values to the variables from their respective domains
such that all the constraints are satisfied

* An assighment that does not violate any constraint is called consistent
or legal assignment

» A solution to a CSP is a complete and consistent assignment

Map coloring

«X={W, N, S, Q, NSW, V, T}
*D={r, g, b}
cC={W#N,S#N,Q#N,W#S,S #Q, etc}

* W # N means {(r,), (r, 9), (g, 1), (g, b), (b, r), (b, g)}

* Note the reduced search space due to the constraints: 2° instead of 3°
* Can you find one solution?

* In a CSP constraint graph, two variables are connected by an edge
if there is a constraint that involves both

Job-Shop Scheduling - Car Assembly

« X'Is the set of tasks
{Axler,Axleg, Wheelgp, Wheel; i, Wheelgg, Wheel; g, Nutsg,
Nutspr,Nutsgg,Nutspp, Capgp, Capy ., Capgg, Cap g, Inspect |

* Values are the start times of tasks: D, = {0, 1, .., 30}

» Constraints: precedence constraints and completion times
« It takes 10 minutes to install an axle:
Axler + 10 < Wheelgpr; Axler + 10 < Wheel;r;

Axleg + 10 < Wheelrg; Axleg+ 10 < Wheel;p.
» Axle installations must not overlap in time:

(Axler + 10 < Axleg) or (Axleg+ 10 < Axler)
* Exercise: CSP formulation of 8-Queens problem

Cryptarithmetic Puzzles
T W O

+ T W O
F O U R

Constraint hypergraph

e Constraints: AUDiff (F, T, U, W, R, 0), F #0 and

O+0=R+10-C;

CT+W+W=U+10-C

CG+T+T=0+10-C5

Cy;=F, 7

Inference

» State-space search, generating successors as new assignments

* Constraint propagation is an alternative where constraints are
enforced locally on the constraint graph

* Local consistency shrinks the search space by eliminating the
inconsistent assignments

 Used along-with search and/or as a preprocessing step

* Types of local consistency
* Node consistency
* Arc consistency
« Path and K-Consistency

* Global constraints, bounds propagation

Node Consistency

* A node in the constraint graph is node-consistent if all the
values in the variable’s domain satisfy the variable’s unary
constraints.

« Example: consider a unary constraint SA # {green}

« The variable SA with initial domain {red, green, blue} can be made
node consistent by eliminating green from its domain, leaving SA
with the reduced domain {red, blue}.

« A graph is node-consistent if every variable in the graph is
node-consistent.

* Instead of node consistency, one can eliminate domain values
Inconsistent with unary constraints

Arc Consistency

* A variable is arc-consistent if for every value in its domain,
there is some value in the domains of all the variables
connected by a binary constraint

« Example: consider the constraint Y =X2 D, =N, D, ={0, 1, 4, 9}

« X is made arc-consistent with Y by restricting D, = { 0, 1, 2, 3}

* However, arc-consistency is ineffective in the map coloring

example

 Algorithm called AC-3 is a widely used arc-consistency
algorithm

AC-3 (Mackworth, 1977)

function AC-3(csp) returns false if an inconsistency is found and true otherwise ° | n |t | a l[y eq Ch
queue <—a queue of arcs, initially all the arcs in csp b | na ry (':0 nstra | nt

inserts two arcs

while gueue is not empty do
(Xi, Xj) < PoP(queue)
if REVISE(csp, X;, X;) then
if size of D; = 0 then return fulse
for each X; in X; NEIGHBORS - {X;} do
add (X, X;) to queue
return frue

function REVISE(csp, X;, X;) returns true iff we revise the domain of X; ° Xi Is bein J ma de
revised < fulse I .
for each + in D; do consistent with X;
if no value y in Dj allows (x.y) to satisfy the constraint between X; and X then 0 (C d3) WO rSt
delete x from D,

revised < true case CompleXity

return revised

11

Path Consistency

* AC does not help with map coloring
* Does not object to 2-coloring the map
* A two-variable set {X, X} Is path-consistent with respect to a
third variable X, if, for every assignment {X; = a, X =b} consistent
with the constralnts (if any) on {X,, X}, there is an a55|gnment to
X that satisfies the constraints on fX,,X } and {X_,,.X}.
* Refers to the overall consistency of the path from X to X; with X,
the middle

» Can infer no valid 2-coloring of the Australia map

»NT » SA

"YoK

K-Consistency

* A CSP is k-consistent if, for any set of k-1 variables and for any
consistent assignment to those variables, a consistent value can
always be assigned to any ki variable

 1-consistency says that, given the empty set, we can make any set of
one variable consistent: this is what we called node consistency

« 2-consistency is the same as arc consistency
« 3-consistency (binary constraints) is the same as path consistency

« A CSP is strongly k-consistent if it is k-consistent and is also
(k-1)-consistent, (k-2), ... all the way down to 1-consistent

« Can design a greedy algorithm

* CSP is NP-complete
» K-consistency requires exponential time and space

Global constraints

* A global constraint involves an arbitrary number of variables. It
Is more efficient to handle these by special-purpose algorithms

« ALLDiff: if m variables are involved in an AlLDiff constraint, and if
n possible distinct values altogether are available, then the
constraint cannot be satisfied if m > n

« Atmost: resource constraint
 Example: no more than 10 personnel are scheduled in total

* We can detect an inconsistency simply by checking the sum of the
minimum values of the current domains

Global constraints

* Bounds propagation: For problems with large integer domains
It is usually not efficient to represent the domain of each
variable as a large set of integers.

* Domains can be represented by upper and lower bounds and
managed by bounds propagation

* Example:

* Consider two flights, F1 and F2, for which the planes have
capacities 1635 and 385, respectively

* The initial domains for the numbers of passengers are then D1 = [0,
165] and D2 = [0, 385]
* The additional constraint that the two flights together must carry

450 people can be handled by propagating bounds constraints as
D1 = [65, 165] and D2 = [285, 385]

Sudoku

4

]

8171614193

I~
v
\O
v—
@\
@)
o
cO
<

A

9O16{71314|5]18]2]1

S14(8)113]2]19]7]6
11316]719]18]12]4]5

712{9]5]16]4]1]3]8

D
E
F

81 1[412]15]13]17]6]9
619(5]4]1]7]13]8]2

3171216|8[9]5

G
H
I

< om O O wWw w o T -

Exercise: Write CSP formulation!

Backtracking Search

« Search for solution is needed when after constraint
propagation there exist variables with multiple possible vlaues

* For a CSP with n variables of domain size d results in a search
tree where all the complete assignments are al-d" leaf nodes at
depth n

* The branching factor at the top would be nd, at the next level (n-1)
d and so on, but the order of assignments does not matter

Backtracking Search P H:

» Backtracking search progresses via a ‘4,: ﬂ ‘ﬁ:

recursive call

« An unassigned variable is (repeatedly)
chosen, a value is assigned and the search ﬂ ﬂ
progresses to another variable and so on

* |If the search succeeds, the solution is returned

* If the search fails, the assignment is restored
to the previous state, and the next value is
tried

« BACKTRACKING-SEARCH keeps only a single
representation of a state (assignment) and
alters that representation rather than
creating new ones

Backtracking Search

function BACKTRACKING-SEARCH (csp) returns a solution or failure
return BACKTRACK(csp, { })

function BACKTRACK((csp, assignment) returns a solution or failure
if assignment is complete then return assignment
var<— SELECT-UNASSIGNED-VARIABLE(csp, assignment)
for each value in ORDER-DOMAIN-VALUES(csp, var,assignment) do
if value is consistent with assignment then
add {var = value} to assignment
inferences <+— INFERENCE(csp, var, assignment)
if inferences # failure then
add inferences to csp
result <— BACKTRACK(csp, assignment)
if result # failure then return result
remove inferences from csp
remove {var = value} from assignment
return failure

19

Improving Backtracking Search

» Backtracking search can be improved using domain-
Independent heuristics that take advantage of the factored
representation of states

 Variable and value ordering heuristics
* Minimum-remaining-values heuristic
 Start with F in crypatrithmetic puzzle
* Degree heuristic - largest first
« Start with SA in Australia map
 Least constraining value first
* Values that rule out the fewest choices first

Interleaved Search and Inference

* Forward Checking: Check for arc consistancy upon a variable

assignment

* Upon assignment to X, for each unassigned variable Y that is
connected to X by a constraint, delete from Y's domain any value
that is inconsistent with the value chosen for X

« After assigning V =blue, the domain of SA is empty indicating that the

partial assignment {WA=red, Q=green, V =blue} is inconsistent with
the constraints. At this point the algorithm backtracks.

Initial domains

After WA=red

After Q=green

After V=blue

WA

NT

0

NSW

%

SA

21

Interleaved Search and Inference

e Combining the MRV heuristic with forward checking is usually

more effective

« After assigning {WA=red} NT and SA each have two values. MRV
will choose one of them first and then the other. After that Q, NSW

and V.

* Forward checking incrementally computes the information that

the MRV heuristic needs...

Initial domains
After WA=red

After Q=green

After V=>blue

WA

NT

0

NSW

SA

22

Interleaved Search and Inference

* Forward checking doesn't detect all inconsistencies since it
does not look ahead far enough

* In the Q=green row, WA and Q arc-consistent, but both NT and

SA are left with blue as their only possible value, which is an
Inconsistency, since they are neighbors.

Initial domains
After WA=red

After Q=green

After V=>blue

Tasmania

WA NT 0 NSW v 54 T
() (1 [I I | I [
[DN ONESESE) EHH|EEHE
[|| [E|EEE H|EEE
[[| = = [EEE

23

Interleaved Search and Inference

« Maintaining Arc Consistency (MAC): After a variable Xiis
assigned a value, the inference procedure calls AC-3

 Instead of a queue of all the arcs, it starts with only the arcs (Xj,Xi)
for all X; that are unassigned variables and are neighbors of X;

* If any variable has its domain reduced to the empty set, the call to
AC-3 fails which triggers backtracking immediately

* We can see that MAC is strictly more powerful than forward
checking unlike MAC, forward checking does not recursively
propagate constraints

* Reading: Chapter 6
* Assignments: PS 4, csp.ipynb

* Next: Logical Agents, Chapter 7

e Mid-Term Examination coming up

