# Artificial Intelligence

#### 3. Search

#### Shashi Prabh

#### School of Engineering and Applied Science Ahmedabad University

#### Contents

#### Goal: use search to solve problems

#### Topics

- Problem-solving agents
  - Steps
- Searching
  - Uninformed Search
  - Informed Serach

# **Problem-Solving Agents**

- Finds a *sequence* of actions that form a path to the goal state(s)
- Steps
  - Goal Formulation: limits the action choices
  - Problem formulation: a description of the states and actions to reach the goal
  - Search: simulates sequences of actions in its model, produces solution
    - In partially observable or nondeterministic environments, the solution would be a branching strategy
  - Execution
    - In fully observable, deterministic and known environment, the agent can ignore the percepts open loop system
    - Otherwise, percepts need to be monitored closed loop system

# Navigation example



Figure 3.1 A simplified road map of part of Romania, with road distances in miles.

# Defining a search problem

- A set of possible states that the environment can be in. We call this the state space.
  - The initial state that the agent starts in. For example: *Arad*. State space
- A set of one or more goal states
- The actions available to the agent. Given a state *s*, ACTIONS(*s*) returns a finite set of actions that can be executed in *s* 
  - We say that each of these actions is applicable in *s*
  - ACTIONS (*Arad*) = {*ToSibiu*, *ToTimisoara*, *ToZerind*}
- Transition model, which describes what each action does
  - RESULT(s, a) returns the state that results from doing action a in state s
  - RESULT(Arad, ToZerind) = Zerind.

# Defining a search problem

- An action cost function, denoted by ACTION-COST(*s*, *a*, *s'*) that gives the numeric cost of applying action *a* in state *s* to reach state *s'* 
  - *c*(*s*, *a*, *s*') when we are doing math
  - Should use a cost function that reflects its own performance measure
- Example: for route-finding agents, the cost of an action might be the length in miles or it might be the time it takes to complete the action.
- A sequence of actions forms a path, and a solution is a path from the initial state to a goal
- An optimal solution has the lowest path cost among all solutions.

# Vacuum-World Example

- States: 8 states
  - Agent can be in either of the two cells, and each call can have dirt or not
- Initial state: Any one of the 8 states
- Actions: Suck, MoveLeft, and MoveRight
  - In a 2-D multi-cell world Forward, Backward, TurnRight, and TurnLeft.
- Transition model: Suck removes any dirt from the agent's cell, move left/right takes the agent to the other room unless it hits a wall, in which case the action has no effect
- Goal states: The states in which every cell is clean
- Action cost: +1 for each action

# State-Space Graph

 The state space can be represented as a graph in which the vertices are states and the directed edges between them are actions.



# Navigation example

- Here the map is a state-space graph
- Each road indicates two actions, one in each direction.



# **Search Algorithms**

- A search algorithm takes a search problem as input and returns a solution or indicates failure
- Search Tree
  - Node corresponds to a state in the state space
  - Edge corresponds to an action
  - The root of the tree corresponds to the initial state
  - Search tree describes paths between states leading to the goal
  - A state may appear multiple times in the search tree

# Search Tree







- The search tree is infinite
- State space size is only 20

# **Search Tree**

- Frontier (green) separates interior from exterior
  - A frontier node is expanded till goal is reached
- Search algorithm: which frontier node to expand next?



# **Search Tree**

• We will superimpose a search tree over the state-space graph, forming various paths from the initial state, trying to find a path to a goal state



# **Best-First Search**

- Evaluation function for each node f(n)
  - Different f(n) result in different search algorithms...
  - f(n) can change with time
- Out of all nodes in the frontier, select the node with the smallest f(n)
  - A node may be added multiple times to the frontier if it is reached by lower cost path



# Search Data Structure

- node
  - node.STATE: the state to which the node corresponds;
  - node.PARENT: the node in the tree that generated this node;
  - node.ACTION: the action that was applied to the parent's state to generate this node
    - Why?
  - node.PATH-COST: the total cost of the path from the initial state to this node
    - g(node) : a synonym for PATH-COST.
  - Following the PARENT pointers back from a node allows us to recover the states and actions along the path to that node. Doing this from a goal node gives us the solution.

# Search Data Structure

- frontier: queue
  - IS-EMPTY(frontier) returns true if no nodes in the frontier
  - POP(frontier) removes the top node from the frontier & returns it
  - TOP(frontier) returns (but does not remove) the top node
  - ADD(node, frontier) inserts node into its proper place in the queue
  - Three kinds of queues are used in search algorithms:
    - Priority queue pops the node with the minimum cost
      - Used in Best-First Search
    - FIFO queue pops the node that was added to the queue the earliest
      - Used in BFS
    - LIFO queue (or, stack) pops the most recently added node
      - Used in DFS

#### **Best-First Search**

**function** BEST-FIRST-SEARCH(*problem*, *f*) **returns** a solution node or *failure*  $node \leftarrow \text{NODE}(\text{STATE}=problem.INITIAL})$ *frontier*  $\leftarrow$  a priority queue ordered by f, with *node* as an element *reached*  $\leftarrow$  a lookup table, with one entry with key *problem*.INITIAL and value *node* while not IS-EMPTY(frontier) do *node*  $\leftarrow$  POP(*frontier*) if problem.Is-GOAL(node.STATE) then return node for each *child* in EXPAND(*problem*, *node*) do  $s \leftarrow child.STATE$ if s is not in *reached* or *child*.PATH-COST < *reached*[s].PATH-COST then  $reached[s] \leftarrow child$ add child to frontier return failure

function EXPAND(*problem*, *node*) yields nodes  $s \leftarrow node.STATE$ for each action in problem.ACTIONS(s) do  $s' \leftarrow problem.RESULT(s, action)$   $cost \leftarrow node.PATH-COST + problem.ACTION-COST(s, action, s')$ yield NODE(STATE=s', PARENT=node, ACTION=action, PATH-COST=cost)

#### **Brute-Force Search**

- The search space can be huge
  - Infinite if state space graph has loops
- We remove references to reached states and maintain the best path to deal with redundancy
- Example: 10x10 grid space
  - Any one of the 100 squares can be reached in at-most 9 moves
  - Approx number of paths of length 9 is  $8^9 \sim 100$  million paths
  - Eliminating redundancy yields roughly 1000000x speedup

# **Performance metrics**

- Completeness: Does the algorithm always find a solution when there is one?
  - And correctly reports failure when there is none?
- Cost optimality: Does it find a solution with the lowest cost?
- Time complexity: How long does it take to find a solution?
  - The number of states and actions considered.
- Space complexity: How much memory it needs to perform the search?

# **Breadth-First Search**

- f(n) = depth of node n
- BFS is complete, not optimal if cost varies
- Time and space complexity are O(b<sup>d</sup>), b is the branching factor and d depth. Not good...
- All the search tree nodes need to be kept in memory which is a problem with BFS
  - At 1 KB per node, the memory needed to search till depth 10 and branching factor 10 is 10 TB



# **Breadth-First Search**

**function** BREADTH-FIRST-SEARCH(*problem*) returns a solution node or *failure*  $node \leftarrow \text{NODE}(problem.INITIAL)$ **if** *problem*.IS-GOAL(*node*.STATE) **then return** *node frontier*  $\leftarrow$  a FIFO queue, with *node* as an element *reached*  $\leftarrow$  {*problem*.INITIAL} while not IS-EMPTY(frontier) do *node*  $\leftarrow$  POP(*frontier*) for each *child* in EXPAND(*problem*, *node*) do  $s \leftarrow child.$ STATE if problem.IS-GOAL(s) then return child if s is not in reached then add s to reached add *child* to *frontier* **return** *failure* 

# Dijkstra's Algorithm

- Uniform-cost search
  - Expand the node with the least cost first
- Complete and optimal
- Time and space complexity:  $O(b^{1+ LC^*/\epsilon J})$ 
  - Can be worse than BFS



# **Depth-First Search**

- f(n) = (depth of node n)
- Complete if state space is
  - Tree or DAG
  - Else incomplete
- Not optimal
- Smaller memory requirement
  - O(bm), m is the max depth
- Time complexity is O(b<sup>m</sup>)



#### Improvements

#### Depth-limited search

- Set the maximum depth limit and do DFS
- E.g., set depth = 19 for the Romania map navigation problem
- Neither complete nor optimal
- Iterative deepening search
  - Set the depth limit as 0, 1, 2, 3, ... and do depth-limited search
    - Most nodes are at the bottom level
  - Combines BFS and DFS
  - Memory requirements of DFS O(bd), is complete, but not optimal in general
    - optimal if action costs are all the same



# **Bidirectional Search**

- Simultaneous search from the initial and gaol states
  - Why?
  - b<sup>d/2</sup> + b<sup>d/2</sup> vs b<sup>d</sup>
- Can use BFS or some other search algorithm
- Keep track of two sets of frontiers and two sets of reached states
  - Opposite parent-child relationships
  - Solution when the two frontiers meet
  - If BFS: O(b<sup>d/2</sup>) time and space complexity

### **Bidirectional Search**

**function** BIBF-SEARCH(*problem<sub>F</sub>*, *f<sub>F</sub>*, *problem<sub>B</sub>*, *f<sub>B</sub>*) **returns** a solution node, or *failure*   $node_F \leftarrow \text{NODE}(problem_F.INITIAL)$  // Node for a start state  $node_B \leftarrow \text{NODE}(problem_B.INITIAL)$  // Node for a goal state frontier<sub>F</sub>  $\leftarrow$  a priority queue ordered by *f<sub>F</sub>*, with  $node_F$  as an element frontier<sub>B</sub>  $\leftarrow$  a priority queue ordered by *f<sub>B</sub>*, with  $node_B$  as an element reached<sub>F</sub>  $\leftarrow$  a lookup table, with one key  $node_F.STATE$  and value  $node_F$ reached<sub>B</sub>  $\leftarrow$  a lookup table, with one key  $node_B.STATE$  and value  $node_B$ solution  $\leftarrow$  failure

while not  $TERMINATED(solution, frontier_F, frontier_B)$  do

if  $f_F(\text{TOP}(frontier_F)) < f_B(\text{TOP}(frontier_B))$  then

 $solution \leftarrow PROCEED(F, problem_F frontier_F, reached_F, reached_B, solution)$ else  $solution \leftarrow PROCEED(B, problem_B, frontier_B, reached_B, reached_F, solution)$ return solution

#### **Informed Search**

- Search process uses domain specific hints about goals
- Hints are given by heuristic function h(n) where
  - h(n) = estimated cost of the cheapest path from n to goal
- Study of informed search = study of heuristic functions

| Arad      | 366 | Mehadia               | 241 |
|-----------|-----|-----------------------|-----|
| Bucharest | 0   | Neamt                 | 234 |
| Craiova   | 160 | Oradea                | 380 |
| Drobeta   | 242 | Pitesti               | 100 |
| Eforie    | 161 | <b>Rimnicu Vilcea</b> | 193 |
| Fagaras   | 176 | Sibiu                 | 253 |
| Giurgiu   | 77  | Timisoara             | 329 |
| Hirsova   | 151 | Urziceni              | 80  |
| Iasi      | 226 | Vaslui                | 199 |
| Lugoj     | 244 | Zerind                | 374 |

# **Greedy Best First Search**

- Expand the node with the smallest h(n) first
- O(|V|) time and space complexity





# A\* Search

- Numerous applications
- h(n) = estimated cost of the cheapest path from n to goal
- g(n) = actual cost from start state to n
- $A^*$  uses f(n) = g(n) + h(n) as the estimated cost from start to goal via n

#### A\* Search



**Figure 3.18** Stages in an A<sup>\*</sup> search for Bucharest. Nodes are labeled with f = g + h. The *h* values are the straight-line distances to Bucharest taken from Figure 3.16.

# A\* Search

- Heuristic estimates must be optimistic or realistic
  - Estimates ≤ Actual costs
- A heuristic is called admissible if it never overestimates the cost to a goal
  - $0 \le h(n) \le h^*(n)$ ,  $h^*(n)$  : actual cost
- A counterexample





# **A\* Search Properties**

- Complete
- Optimal if heuristic is admissible
- Proof by contradiction
  - The cost of A\* solution C > C\* where C\* is the optimal cost.
  - Let n be a node which is on the path to optimal solution but not in A\* solution. Therefore,  $f(n) \ge C > C^*$  which can't be true.

$$f(n) > C^*$$
 (otherwise *n* would have been expanded)

$$f(n) = g(n) + h(n)$$
 (by definition)

- $f(n) = g^*(n) + h(n)$  (because *n* is on an optimal path)
- $f(n) \leq g^*(n) + h^*(n)$  (because of admissibility,  $h(n) \leq h^*(n)$ )

$$f(n) \leq C^*$$
 (by definition,  $C^* = g^*(n) + h^*(n)$ )

## **Consistent heuristic**

- A heuristic is consistent if it obeys triangle inequality
  - $h(n) \le c(n, a, n') + h(n')$
  - Going via n' should not reduce the cost
- Every consistent heuristic is admissible but not vice-versa
  - Stronger condition than consistency
- With a consistent heuristic, the first time we reach a state, it will be on an optimal path
  - If C\* is the optimal cost, A\* won't expand any node with f(n) > C\*



### A\* Search Contours

- A\* expands lowest f-cost node at the frontier
  - Contours have bias towards the goal



# Weighted A\* - Satisficing Search

- A\* expands too may nodes
- Satisficing: accept suboptimal but "good enough" solutions
- Detour index: multiplier to straight line distance to account for road curvatures
- Weighted A\* search: f(n) = g(n) + W \* h(n), W > 1
  - "Somewhat greedy best-first search"



### Weighted A\* Search

A\* search:g(n) + h(n)(W = 1)Uniform-cost search:g(n)(W = 0)Greedy best-first search:h(n) $(W = \infty)$ Weighted A\* search: $g(n) + W \times h(n)$  $(1 < W < \infty)$ 

# Improvements to A\* Search

- A\* is memory hungry
- Iterative deepening A\* search (IDA\*)
  - Cutoff is f-cost (g+h) instead of depth
  - Increase the cutoff by the smallest f-cost of the node beyond the search contour
    - No of iterations is bounded by C\* if f-cost is an integer
- Recursive best-first search (RBFS)
  - f-limit keeps track of the f-value of the best alternative path from any ancestor of the current node
    - If the recursion exceeds this limit, the search unwinds

#### **RBFS**

- Frequent switches
  - Increases near the goal



# Creating admissible heuristic

- Much of the hard work
- Solve a relaxed version of the problem, use pattern databases, use precomputed landmark solutions, learn (what to look for)
- Example: 8-Puzzle
  - 9!/2 = 181,400 reachable states
  - Good heuristics?





Start State

Goal State

# **Creating good heuristic**

- Heuristic choices for 8-Puzzle
  - No. of misplaced tiles (h<sub>1</sub>)
  - Sum of Manhattan distances to the correct position  $(h_2)$
  - Here  $h_2$  dominates  $h_1$ , i.e.,  $h_2 \ge h_1$ 
    - A\* with  $h_1$  will expand all the nodes that A\* with  $h_2$  does and possibly some more
- The effect of using a heuristic in A\* search is a reduced effective depth of the search compared to that of the uniform search (Korf & Reid, 1998)
  - O(b<sup>d-k</sup>) vs O(b<sup>d</sup>)





Goal State

Start State  $h_1 = 8, h_2 = 18$ 

# Dominating heuristic is more efficient

|    | Search Cost (nodes generated) |                     |                     | Effective Branching Factor |                     |                     |
|----|-------------------------------|---------------------|---------------------|----------------------------|---------------------|---------------------|
| d  | BFS                           | $\mathbf{A}^*(h_1)$ | $\mathbf{A}^*(h_2)$ | BFS                        | $\mathbf{A}^*(h_1)$ | $\mathbf{A}^*(h_2)$ |
| 6  | 128                           | 24                  | 19                  | 2.01                       | 1.42                | 1.34                |
| 8  | 368                           | 48                  | 31                  | 1.91                       | 1.40                | 1.30                |
| 10 | 1033                          | 116                 | 48                  | 1.85                       | 1.43                | 1.27                |
| 12 | 2672                          | 279                 | 84                  | 1.80                       | 1.45                | 1.28                |
| 14 | 6783                          | 678                 | 174                 | 1.77                       | 1.47                | 1.31                |
| 16 | 17270                         | 1683                | 364                 | 1.74                       | 1.48                | 1.32                |
| 18 | 41558                         | 4102                | 751                 | 1.72                       | 1.49                | 1.34                |
| 20 | 91493                         | 9905                | 1318                | 1.69                       | 1.50                | 1.34                |
| 22 | 175921                        | 22955               | 2548                | 1.66                       | 1.50                | 1.34                |
| 24 | 290082                        | 53039               | 5733                | 1.62                       | 1.50                | 1.36                |
| 26 | 395355                        | 110372              | 10080               | 1.58                       | 1.50                | 1.35                |
| 28 | 463234                        | 202565              | 22055               | 1.53                       | 1.49                | 1.36                |

# Generate heuristic from relaxed problems

- The state-space graph of the relaxed problem is a supergraph of the original problem state-space graph
  - Relaxation results in extra edges added to the graph
- The cost of an admissible solution to a relaxed problem becomes less. Hence, the solution of relaxed problem is an admissible heuristic to the original problem
- Heuristic cost needs to be generated fast
- Generating heuristic costs can be automated
  - Absolver (Prieditis, 1993) generated heuristic was better than known ones for 8-Puzzle and could generate for Rubik's cube
- Can combine admissible heuristics:  $h(n) = max (h_1(n), ..., h_k(n))$

# Generate heuristic from subproblems

- Cost of the optimal solution of a subproblem is a lower bound on the cost of the complete problem
- Store the exact solution cost of every subproblem in a pattern database
  - Example: pattern for 1-2-3-4
  - Can combine the heuristic cost for multiple patterns (take max)
  - More accurate than Manhattan distance
  - Large speedups in practice





Start State

- Reading: Chapter 3
- Assignments: PS 2, search.ipynb
- Project: Phase-I report due in 3 weeks
- Next: CSP, Chapter 6
- Quiz 1 coming up