
Artificial Intelligence

3. Search

Shashi Prabh

School of Engineering and Applied Science

Ahmedabad University
1

Contents

Goal: use search to solve problems

Topics
• Problem-solving agents

• Steps

• Searching
• Uninformed Search

• Informed Serach

2

Problem-Solving Agents

• Finds a sequence of actions that form a path to the goal state(s)

• Steps
• Goal Formulation: limits the action choices

• Problem formulation: a description of the states and actions to
reach the goal

• Search: simulates sequences of actions in its model, produces
solution
• In partially observable or nondeterministic environments, the solution

would be a branching strategy

• Execution
• In fully observable, deterministic and known environment, the agent

can ignore the percepts – open loop system

• Otherwise, percepts need to be monitored – closed loop system
3

Navigation example

4

Defining a search problem
• A set of possible states that the environment can be in. We call this

the state space.
• The initial state that the agent starts in. For example: Arad. State

space

• A set of one or more goal states

• The actions available to the agent. Given a state s, ACTIONS(s) returns
a finite set of actions that can be executed in s
• We say that each of these actions is applicable in s
• ACTIONS (Arad) = {ToSibiu,ToTimisoara,ToZerind}

• Transition model, which describes what each action does
• RESULT(s, a) returns the state that results from doing action a in

state s
• RESULT(Arad, ToZerind) = Zerind .

5

Defining a search problem
• An action cost function, denoted by ACTION-COST(s, a, s′) that gives

the numeric cost of applying action a in state s to reach state s′
• c(s, a, s′) when we are doing math

• Should use a cost function that reflects its own performance measure

• Example: for route-finding agents, the cost of an action might be
the length in miles or it might be the time it takes to complete the
action.

• A sequence of actions forms a path, and a solution is a path from the
initial state to a goal

• An optimal solution has the lowest path cost among all solutions.

6

Vacuum-World Example

• States: 8 states
• Agent can be in either of the two cells, and each call can have dirt

or not

• Initial state: Any one of the 8 states

• Actions: Suck, MoveLeft, and MoveRight
• In a 2-D multi-cell world Forward, Backward, TurnRight, and

TurnLeft.

• Transition model: Suck removes any dirt from the agent’s cell,
move left/right takes the agent to the other room unless it hits
a wall, in which case the action has no effect

• Goal states: The states in which every cell is clean

• Action cost: +1 for each action 7

State-Space Graph

• The state space can be represented as a graph in which the
vertices are states and the directed edges between them are
actions.

8

Navigation example
• Here the map is a state-space graph

• Each road indicates two actions, one in each direction.

9

Search Algorithms

• A search algorithm takes a search problem as input and
returns a solution or indicates failure

• Search Tree
• Node corresponds to a state in the state space

• Edge corresponds to an action

• The root of the tree corresponds to the initial state

• Search tree describes paths between states leading to the goal

• A state may appear multiple times in the search tree

10

Search Tree

11

Partial Search Trees

• The search tree is infinite
• State space size is only 20

Search Tree

• Frontier (green) separates interior from exterior
• A frontier node is expanded till goal is reached

• Search algorithm: which frontier node to expand next?

12

Search Tree

13Partial Search Trees

• We will superimpose a search tree over the state-space graph,
forming various paths from the initial state, trying to find a path
to a goal state

Best-First Search

• Evaluation function for each node f(n)
• Different f(n) result in different search algorithms…

• f(n) can change with time

• Out of all nodes in the frontier, select the node with the
smallest f(n)
• A node may be added multiple times to the frontier if it is reached

by lower cost path

14

S D

4

2

2

6

2

Search Data Structure

• node

• node.STATE: the state to which the node corresponds;

• node.PARENT: the node in the tree that generated this node;

• node.ACTION: the action that was applied to the parent’s state to
generate this node
• Why?

• node.PATH-COST: the total cost of the path from the initial state
to this node
• g(node) : a synonym for PATH-COST.

• Following the PARENT pointers back from a node allows us to
recover the states and actions along the path to that node. Doing
this from a goal node gives us the solution.

15

Search Data Structure

• frontier: queue
• IS-EMPTY(frontier) returns true if no nodes in the frontier

• POP(frontier) removes the top node from the frontier & returns it

• TOP(frontier) returns (but does not remove) the top node

• ADD(node, frontier) inserts node into its proper place in the queue

• Three kinds of queues are used in search algorithms:
• Priority queue - pops the node with the minimum cost

• Used in Best-First Search

• FIFO queue - pops the node that was added to the queue the earliest
• Used in BFS

• LIFO queue (or, stack) - pops the most recently added node
• Used in DFS

16

Best-First Search

17

Brute-Force Search

• The search space can be huge
• Infinite if state space graph has loops

• We remove references to reached states and maintain the best
path to deal with redundancy

• Example: 10x10 grid space
• Any one of the 100 squares can be reached in at-most 9 moves

• Approx number of paths of length 9 is 89 ~ 100 million paths

• Eliminating redundancy yields roughly 1000000x speedup

18

Performance metrics

• Completeness: Does the algorithm always find a solution when
there is one?
• And correctly reports failure when there is none?

• Cost optimality: Does it find a solution with the lowest cost?

• Time complexity: How long does it take to find a solution?
• The number of states and actions considered.

• Space complexity: How much memory it needs to perform the
search?

19

Breadth-First Search

• f(n) = depth of node n

• BFS is complete, not optimal if cost varies

• Time and space complexity are O(bd), b is the branching factor
and d depth. Not good…

• All the search tree nodes need to be kept in memory which is a
problem with BFS
• At 1 KB per node, the memory needed to search till depth 10 and

branching factor 10 is 10 TB

20

Breadth-First Search

• f(n) = depth of node n

21

Dijkstra’s Algorithm

• Uniform-cost search
• Expand the node with the least cost first

• Complete and optimal

• Time and space complexity: O(b 1 + └C*/ε┘)

• Can be worse than BFS

22

Depth-First Search

• f(n) = - (depth of node n)

• Complete if state space is
• Tree or DAG

• Else incomplete

• Not optimal

• Smaller memory requirement
• O(bm), m is the max depth

• Time complexity is O(bm)

23

Improvements

• Depth-limited search
• Set the maximum depth limit and do DFS

• E.g., set depth = 19 for the Romania map navigation problem

• Neither complete nor optimal

• Iterative deepening search
• Set the depth limit as 0, 1, 2, 3, … and do depth-limited search

• Most nodes are at the bottom level

• Combines BFS and DFS

• Memory requirements of DFS O(bd), is complete, but not optimal in
general
• optimal if action costs are all the same

24

25

Bidirectional Search

• Simultaneous search from the initial and gaol states
• Why?

• bd/2 + bd/2 vs bd

• Can use BFS or some other search algorithm

• Keep track of two sets of frontiers and two sets of reached
states
• Opposite parent-child relationships

• Solution when the two frontiers meet

• If BFS: O(bd/2) time and space complexity

26

Bidirectional Search

27

Informed Search

• Search process uses domain specific hints about goals

• Hints are given by heuristic function h(n) where
• h(n) = estimated cost of the cheapest path from n to goal

• Study of informed search = study of heuristic functions

28

Greedy Best First Search

• Expand the node with the smallest h(n) first

• O(|V|) time and space complexity

29

30

A* Search

• Numerous applications

• h(n) = estimated cost of the cheapest path from n to goal

• g(n) = actual cost from start state to n

• A* uses f(n) = g(n) + h(n) as the estimated cost from start to goal via n

31

A* Search

32

• Heuristic estimates must be optimistic or realistic
• Estimates ≤ Actual costs

• A heuristic is called admissible if it never overestimates the
cost to a goal
• 0 ≤ h(n) ≤ h*(n), h*(n) : actual cost

• A counterexample

A* Search

33

S

A

D

2

6

3
h=6

h=5

h=0

S

A D

62+5

A* Search Properties

• Complete

• Optimal if heuristic is admissible

• Proof by contradiction
• The cost of A* solution C > C* where C* is the optimal cost.

• Let n be a node which is on the path to optimal solution but not in
A* solution. Therefore, f(n) ≥ C > C* which can’t be true.

34

Consistent heuristic
• A heuristic is consistent if it obeys triangle inequality

• h(n) ≤ c(n, a, n’) + h(n’)
• Going via n’ should not reduce the cost

• Every consistent heuristic is admissible but not vice-versa
• Stronger condition than consistency

35

• With a consistent heuristic, the first
time we reach a state, it will be on an
optimal path
• If C* is the optimal cost, A* won’t

expand any node with f(n) > C*

A* Search Contours

• A* expands lowest f-cost node at the frontier
• Contours have bias towards the goal

36

Weighted A* - Satisficing Search

• A* expands too may nodes

• Satisficing: accept suboptimal but “good enough” solutions

• Detour index: multiplier to straight line distance to account for
road curvatures

• Weighted A* search: f(n) = g(n) + W * h(n), W > 1
• “Somewhat greedy best-first search”

37

Weighted A* Search

38

Improvements to A* Search

• A* is memory hungry

• Iterative deepening A* search (IDA*)
• Cutoff is f-cost (g+h) instead of depth

• Increase the cutoff by the smallest f-cost of the node beyond the
search contour
• No of iterations is bounded by C* if f-cost is an integer

• Recursive best-first search (RBFS)
• f-limit keeps track of the f-value of the best alternative path from

any ancestor of the current node
• If the recursion exceeds this limit, the search unwinds

39

RBFS

• Frequent switches
• Increases near the goal

40

Creating admissible heuristic

• Much of the hard work

• Solve a relaxed version of the problem, use pattern databases,
use precomputed landmark solutions, learn (what to look for)

• Example: 8-Puzzle
• 9!/2 = 181,400 reachable states

• Good heuristics?

41

Creating good heuristic

• Heuristic choices for 8-Puzzle
• No. of misplaced tiles (h1)

• Sum of Manhattan distances to the correct position (h2)

• Here h2 dominates h1, i.e., h2 ≥ h1

• A* with h1 will expand all the nodes that A* with h2 does and possibly
some more

42

• The effect of using a heuristic in A*
search is a reduced effective depth
of the search compared to that of the
uniform search (Korf & Reid, 1998)
• O(bd-k) vs O(bd)

h1 = 8, h2 = 18

Dominating heuristic is more efficient

43

Generate heuristic from relaxed problems

• The state-space graph of the relaxed problem is a supergraph
of the original problem state-space graph
• Relaxation results in extra edges added to the graph

• The cost of an admissible solution to a relaxed problem
becomes less. Hence, the solution of relaxed problem is an
admissible heuristic to the original problem

• Heuristic cost needs to be generated fast

• Generating heuristic costs can be automated
• Absolver (Prieditis, 1993) generated heuristic was better than

known ones for 8-Puzzle and could generate for Rubik’s cube

• Can combine admissible heuristics: h(n) = max (h1(n), …, hk(n))

44

Generate heuristic from subproblems

• Cost of the optimal solution of a subproblem is a lower bound
on the cost of the complete problem

• Store the exact solution cost of every subproblem in a pattern
database
• Example: pattern for 1-2-3-4

• Can combine the heuristic cost for multiple patterns (take max)

• More accurate than Manhattan distance

• Large speedups in practice

45

• Reading: Chapter 3

• Assignments: PS 2, search.ipynb

• Project: Phase-I report due in 3 weeks

• Next: CSP, Chapter 6

• Quiz 1 coming up

46

