Artificial Intelligence

3. Search

Shashi Prabh

School of Engineering and Applied Science
Ahmedabad University

Contents

Goal: use search to solve problems

Topics
* Problem-solving agents
» Steps
« Searching
* Uninformed Search
* Informed Serach

Problem-Solving Agents

 Finds a sequence of actions that form a path to the goal state(s)

 Steps
* Goal Formulation: limits the action choices

* Problem formulation: a description of the states and actions to
reach the goal

« Search: simulates sequences of actions in its model, produces
solution

* In partially observable or nondeterministic environments, the solution
would be a branching strategy

 Execution

* In fully observable, deterministic and known environment, the agent
can ignore the percepts - open loop system

* Otherwise, percepts need to be monitored - closed loop system

Navigation example

Oradea

735

Arad
92

Fagaras

99

118 Vaslui

Rimnicu Vilcea

Timisoara

Pitesti

Lugoj

Hirsova

Urziceni

Mehadia
86

3 Bucharest

Drobeta
90

Giurgiu

Eforie

Craiova

Figure 3.1 A simplified road map of part of Romania, with road distances in miles.

Defining a search problem

» A set of possible states that the environment can be in. We call this
the state space.
* The initial state that the agent starts in. For example: Arad. State
space
* A set of one or more goal states

* The actions available to the agent. Given a state s, ACTIONS(s) returns
a finite set of actions that can be executed in s

 We say that each of these actions is applicable in s
« ACTIONS (Arad) = {ToSibiu, ToTimisoara, ToZerind}

* Transition model, which describes what each action does

« RESULT(s, a) returns the state that results from doing action ain
state s

« RESULT(Arad ToZerina) = Zerind .

Defining a search problem

 An action cost function, denoted by ACTION-COST(s, g, s) that gives
the numeric cost of applying action ain state sto reach state s

* c(s, a, s) when we are doing math
» Should use a cost function that reflects its own performance measure

. Example: for route-finding agents, the cost of an action might be
the length in miles or it might be the time it takes to complete the

action.

* A sequence of actions forms a path, and a solution is a path from the
Initial state to a goal

* An optimal solution has the lowest path cost among all solutions.

Vacuum-World Example

» States: 8 states

* Agent can be in either of the two cells, and each call can have dirt
or not

* Initial state: Any one of the 8 states

 Actions: Suck, Moveleft, and MoveRight

* In a 2-D multi-cell world Forward, Backward, TurnRight, and
TurnLeft.

 Transition model: Suck removes any dirt from the agent’s cell,
move left/right takes the agent to the other room unless it hits
a wall, in which case the action has no effect

* Goal states: The states in which every cell is clean
 Action cost: +1 for each action

State-Space Graph

* The state space can be represented as a graph in which the
vertices are states and the directed edges between them are
actions.

2R 3 =S

(= AQR

LCEA N ;n:) C;:a N AQR

Navigation example

* Here the map is a state-space graph

 Each road indicates two actions, one in each direction.

Oradea

Neamt

Arad
92

Fagaras

99

18 Vaslui

Rimnicu Vilcea

Timisoara

142

111 Pitesti

Lugoj

Hirsova

Urziceni

Mehadia

86

s Bucharest

Drobeta

120

90
Giurgiu

Eforie

Craiova

Search Algorithms

* A search algorithm takes a search problem as input and
returns a solution or indicates failure

* Search Tree
* Node corresponds to a state in the state space
* Edge corresponds to an action
* The root of the tree corresponds to the initial state
» Search tree describes paths between states leading to the goal
» A state may appear multiple times in the search tree

Partial Search Trees

< Sibin ¢ Timiscard < Zerind
;< Arad D (] S CAmd D ¢ Oradea D
B o e

Oradea
Neamt

92

Fagaras
Vaslui

Arad

]

99

118
142

Rimnicu Vilcea

Timisoara

Pitesti
Hirsova

11 Lugoj
Urziceni
86

Bucharest

Mehadia

75
Drobeta
Eforie

Giurgiu

Craiova
£ el el
Arad > < Oradea >

’

C_Anad D O

* The search tree is infinite
« State space size is only 20 D @ @

Search Tree

* Frontier (green) separates interior from exterior
A frontier node is expanded till goal is reached

« Search algorithm: which frontier node to expand next?

SRS Sapsses

Search Tree

* We will superimpose a search tree over the state-space graph,
forming various paths from the initial state, trying to find a path
to a goal state

Partial Search Trees

13

Best-First Search

 Evaluation function for each node f(n)
« Different f(n) result in different search algorithms...
« f(n) can change with time

* Out of all nodes in the frontier, select the node with the
smallest f(n)

* A node may be added multiple times to the frontier if it is reached
by lower cost path

Search Data Structure

* node
* node.STATE: the state to which the node corresponds;
* node.PARENT: the node in the tree that generated this node;
* node.ACTION: the action that was applied to the parent’s state to
generate this node
. Why?
* node.PATH-COST: the total cost of the path from the initial state
to this node
* g(node) : a synonym for PATH-COST.

* Following the PARENT pointers back from a node allows us to
recover the states and actions along the path to that node. Doing
this from a goal node gives us the solution.

Search Data Structure

* frontier: queue
* |S-EMPTY(frontier) returns true if no nodes in the frontier
- POP(frontier) removes the top node from the frontier & returns it
« TOP(frontier) returns (but does not remove) the top node
- ADD(node, frontier) inserts node into its proper place in the queue

* Three kinds of queues are used in search algorithms:
* Priority queue - pops the node with the minimum cost
* Used in Best-First Search
* FIFO queue - pops the node that was added to the queue the earliest
* Used in BFS
« LIFO queue (or, stack) - pops the most recently added node
« Used in DFS

Best-First Search

function BEST-FIRST-SEARCH(problem, f) returns a solution node or failure
node <— NODE(STATE=problem.INITIAL)
frontier <—a priority queue ordered by f, with node as an element
reached <+ a lookup table, with one entry with key problem.INITIAL and value node
while not IS-EMPTY (frontier) do
node < POP(frontier)
if problem.1S-GOAL(node.STATE) then return node
for each child in EXPAND(problem, node) do
§<—child.STATE
if 5 is not in reached or child PATH-COST < reached|s|. PATH-COST then
reached|s] <+ child
add child to frontier
return failure

function EXPAND(problem, node) yields nodes
§—node.STATE
for each action in problem.ACTIONS(s) do
s' < problem RESULT(s, action)
cost < node. PATH-COST + problem. ACTION-COST(s, action, s)
yield NODE(STATE=s', PARENT=node, ACTION=action, PATH-COST=cost)

17

Brute-Force Search

* The search space can be huge
* Infinite if state space graph has loops

* We remove references to reached states and maintain the best
path to deal with redundancy

« Example: 10x10 grid space
* Any one of the 100 squares can be reached in at-most 9 moves

« Approx number of paths of length 9 is 87 ~ 100 million paths
 Eliminating redundancy yields roughly 1000000x speedup

Performance metrics

* Completeness: Does the algorithm always find a solution when

there is one?
* And correctly reports failure when there is none?

* Cost optimality: Does it find a solution with the lowest cost?

* Time complexity: How long does it take to find a solution?
* The number of states and actions considered.

» Space complexity: How much memory it needs to perform the
search?

Breadth-First Search

* f(n) = depth of node n

* BFS is complete, not optimal if cost varies

* Time and space complexity are 0(bY), b is the branching factor
and d depth. Not good..

 All the search tree nodes need to be kept in memory which is a

problem with BFS
* At 1 KB per node, the memory needed to search till depth 10 and

branching factor 10 is 10 TB
>® @

Breadth-First Search

function BREADTH-FIRST-SEARCH(problem) returns a solution node or failure
node <— NODE(problem.INITIAL)
if problem.1S-GOAL(node.STATE) then return node
frontier +—a FIFO queue, with node as an element
reached <— { problem.INITIAL }
while not IS-EMPTY(frontier) do
node < POP(frontier)
for each child in EXPAND(problem, node) do
§<—child. STATE
if problem.1S-GOAL(s) then return child
if 5 is not in reached then
add s to reached
add child to frontier
return failure

21

Dijkstra’s Algorithm

* Uniform-cost search
* Expand the node with the least cost first

* Complete and optimal

- Time and space complexity: O(b '+ LC*/ed)
« Can be worse than BFS

Sibiu 99 Fagaras

Rimnicu Vilcea

Pitesti

Bucharest

Depth-First Search

* f(n) = - (depth of node n) ; c ® © o e

D E F G D E F G D) (£) F G

 Complete if state space is
* Tree or DAG
* Else incomplete

* Not optimal

* Smaller memory requirement
« O(bm), m is the max depth

* Time complexity is 0(b™) ’ @9 ®

LM N O @O M N O N O

23

Improvements

* Depth-limited search
* Set the maximum depth limit and do DFS
* E.g., set depth = 19 for the Romania map navigation problem
* Neither complete nor optimal

* lterative deepening search

« Set the depth limitas 0, 1, 2, 3, ... and do depth-limited search
* Most nodes are at the bottom level

e Combines BFS and DFS

« Memory requirements of DFS O(bd), is complete, but not optimal in
general

« optimal if action costs are all the same

limt: 0

limit: 1

limut: 2

limut: 3

25

Bidirectional Search

* Simultaneous search from the initial and gaol states
* Why?
* bd/2 + hd/2 ys b

« Can use BFS or some other search algorithm

» Keep track of two sets of frontiers and two sets of reached
states
* Opposite parent-child relationships
* Solution when the two frontiers meet
« If BFS: 0(b%2) time and space complexity

Bidirectional Search

function BIBF-SEARCH(problemp, fr., problemp, fp) returns a solution node, or failure
noder <~ NODE(problemp INITIAL) // Node for a start state
nodep <~ NODE(problemp . INITIAL) // Node for a goal state
frontiery <—a priority queue ordered by fr, with noder as an element
frontierp <—a priority queue ordered by fp, with nodep as an element
reachedrp < a lookup table, with one key noder.STATE and value noder
reachedp < a lookup table, with one key nodep.STATE and value nodep
solution < failure
while not TERMINATED(solution, frontierg, frontierg) do

if fr(TOP(frontierr)) < fp(TOP(frontiery)) then
solution<—PROCEED(F, problemp frontierr, reachedp, reachedp, solution)

else solution +— PROCEED(B, problemg, frontierg, reachedg, reachedy , solution)
return solution

27

Informed Search

» Search process uses domain specific hints about goals

* Hints are given by heuristic function h(n) where
* h(n) = estimated cost of the cheapest path from n to goal

* Study of informed search = study of heuristic functions

Arad 366 Mehadia 241
Bucharest 0 Neamt 234
Craiova 160 Oradea 380
Drobeta 242 Pitesti 100
Eforie 161 Rimnicu Vilcea 193
Fagaras 176 Sibiu 253
Giurgiu 77 Timisoara 329
Hirsova 151 Urziceni 80
Iasi 226 Vaslui 199

Lugoj 244 Zerind 374

Greedy Best First Search

« Expand the node with the smallest h(n) first
* O(JV[) time and space complexity

Oradea

Neamt

Arad 366 Mehadia
Bucharest 0 Neamt
Arad Craiova 160 Oradea
Drobeta 242 Pitesti
Eforie 161 Rimnicu Vilcea
e Vaslui Fagaras 176 Sibiu
Timisonra Giurgiu 77 Timisoara

T Hirsova 151 Urziceni

11 Lugoi Pitesti Iasi 226 Vaslui
Lugoj 244 Zerind

Hirsova

Mehadia Urziceni

Bucharest
Drobeta
90

Craiova Giurgiu Eforie

29

241
234
380
100
193
253
329

80
199
374

(b) After expanding Arad

233 329 374

(c¢) After expanding Sibiu

346 176 380 193

(d) After expanding Fagaras

30

A* Search

 Numerous applications

* h(n) = estimated cost of the cheapest path from n to goal

* g(n) = actual cost from start state ton

« A* uses f(n) = g(n) + h(n) as the estimated cost from start to goal via n

A* Search

(a) The initial state

366=0+366

(e) After expanding Fagaras

(b) After expanding Arad

imisoara

447=118+329 449=T75+374

393=140+253 447=118+329 449=T75+374
(c) After expanding Sibiu

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

449=75+374

(f) After expanding Pitesti
646=280+366 415=239+176 671=291+380 413=220+193
447=118+329

(d) After expanding Rimnicu Vilcea 449=75+374

449=75+374

526=366+160 417=317+100 $53=300+253 418=418+0 615=455+160 607=414+193

Figure 3.18 Stages in an A* search for Bucharest. Nodes are labeled with f = g+ h. The h
values are the straight-line distances to Bucharest taken from Figure 3.16.

32

A* Search

* Heuristic estimates must be optimistic or realistic
» Estimates < Actual costs

* A heuristic is called admissible if it never overestimates the
cost to a goal

e 0 < h(n) £ h*(n), h*(n) : actual cost

* A counterexample
©

h=6 2 h=0

33

A* Search Properties

 Complete
* Optimal if heuristic is admissible

* Proof by contradiction
* The cost of A* solution C > C* where C* is the optimal cost.

* Let n be a node which is on the path to optimal solution but not in
A* solution. Therefore, f(n) = C > C* which can’t be true.

> C* (otherwise n would have been expanded)
g(n)+h(n) (by definition)

g"(n)+h(n) (because n is on an optimal path)

g (n)+h*(n) (because of admissibility, h(n) < h*(n))
C* (by definition, C* = g*(n) + h*(n))

f

n

~

n

(n)
(n) =
(n)
(n)
(n)

~

~

n

IA A

~

n

34

Consistent heuristic

* A heuristic is consistent if it obeys triangle inequality
* h(n) < c(n, a, n’) + h(n")
* Going via n’ should not reduce the cost

* Every consistent heuristic is admissible but not vice-versa
» Stronger condition than consistency

* With a consistent heuristic, the first
time we reach a state, it will be on an
optimal path

* If C* is the optimal cost, A* won't
expand any node with f(n) > C*

35

A* Search Contours

* A* expands lowest f-cost node at the frontier
« Contours have bias towards the goal

36

Weighted A* - Satisficing Search

* A* expands too may nodes
« Satisficing: accept suboptimal but “good enough” solutions

* Detour index: multiplier to straight line distance to account for
road curvatures

« Weighted A* search: f(n) = g(n) + W * h(n), W > 1
* “‘Somewhat greedy best-first search”

37

Weighted A* Search

A* search: g(n)+h(n)
Uniform-cost search: g(n)
Greedy best-first search: h(n)

38

Improvements to A* Search

* A* is memory hungry
* [terative deepening A* search (IDA%)

« Cutoff is f-cost (g+h) instead of depth

* Increase the cutoff by the smallest f-cost of the node beyond the
search contour

* No of iterations is bounded by C* if f-cost is an integer

» Recursive best-first search (RBFS)

» f-limit keeps track of the f-value of the best alternative path from
any ancestor of the current node

 |f the recursion exceeds this limit, the search unwinds

39

RBFS

* Frequent switches
* Increases near the goal

(a) After expanding Arad, Sibiu,
and Rimnicu Vilcea

526 417 553

(b) After unwinding back to Sibiu
and expanding Fagaras

149

591 450

(c) After switching back to Rimnicu Vilcea
and expanding Pitesti

449

T o> G 0

418 615 607

Creating admissible heuristic

* Much of the hard work

» Solve a relaxed version of the problem, use pattern databases,
use precomputed landmark solutions, learn (what to look for)

* Example: 8-Puzzle
 91/2 = 181,400 reachable states

 Good heuristics?

Start State Goal State

Creating good heuristic

* Heuristic choices for 8-Puzzle
* No. of misplaced tiles (h,)
« Sum of Manhattan distances to the correct position (h,)
* Here h, dominates hy, i.e., h, 2 h,

« A* with h; will expand all the nodes that A* with h, does and possibly
some more

* The effect of using a heuristic in A*
search is a reduced effective depth
of the search compared to that of the
uniform search (Korf & Reid, 1998)

* 0(b9-¥) vs O(bY)

Start State Goal State

h;=8,h,=18

Dominating heuristic is more efficient

Search Cost (nodes generated)

Effective Branching Factor

d BFS A*(hy) A*(hy) BFS A*(hy) A*(hp)

6 128 24 19 2.01 1.42 1.34

8 368 48 31 1.91 1.40 1.30
10 1033 116 48 1.85 1.43 1.27
12 2672 279 84 1.80 1.45 1.28
14 6783 678 174 1.77 1.47 1.31
16 17270 1683 364 1.74 1.48 1.32
18 41558 4102 751 1.72 1.49 1.34
20 91493 9905 1318 1.69 1.50 1.34
22 175921 22955 2548 1.66 1.50 1.34
24 290082 53039 5733 1.62 1.50 1.36
26 395355 110372 10080 1.58 1.50 1.35
28 463234 202565 22055 1.53 1.49 1.36

43

Generate heuristic from relaxed problems

* The state-space graph of the relaxed problem is a supergraph
of the original problem state-space graph
* Relaxation results in extra edges added to the graph

* The cost of an admissible solution to a relaxed problem
becomes less. Hence, the solution of relaxed problem is an
admissible heuristic to the original problem

» Heuristic cost needs to be generated fast

» Generating heuristic costs can be automated

« Absolver (Prieditis, 1993) generated heuristic was better than
known ones for 8-Puzzle and could generate for Rubik’s cube

« Can combine admissible heuristics: h(n) = max (h,(n), .., h,(n))

A

Generate heuristic from subproblems

* Cost of the optimal solution of a subproblem is a lower bound
on the cost of the complete problem

 Store the exact solution cost of every subproblem in a pattern
database

 Example: pattern for 1-2-3-4
« Can combine the heuristic cost for multiple patterns (take max)
* More accurate than Manhattan distance

» Large speedups in practice

Start State Goal State

45

* Reading: Chapter 3
» Assignments: PS 2, search.ipynb

* Project: Phase-I report due in 3 weeks

* Next: CSP, Chapter 6

* Quiz 1 coming up

46

