
Artificial Intelligence

14. Markov Models

Shashi Prabh

School of Engineering and Applied Science

Ahmedabad University
1

Uncertainty and Time
• Often, we want to reason about a sequence of observations where

the state of the underlying system is changing

• Speech recognition

• Robot localization

• User attention

• Medical monitoring

• Global climate

• Need to introduce time into our models

Markov Models

• Value of X at a given time is called the state (usually discrete,
finite)

• Discrete-time model: view the problem as snapshots in time,
called time slices
• Each time slice contains a set of random variables, some

observable and some not
• We will assume the same subset of variables are observable in every

time slice

• Transition model: P(Xt | Xt-1) how the state evolves over time

• Stationarity assumption: transition probabilities are the same
at all times

X1X0 X2 X3

Markov Models

• Markov assumption: “future is independent of the past given the
present”

• Xt+1 is independent of X0,…, Xt-1 given Xt
• This is a first-order Markov model (a kth-order model allows

dependencies on k earlier steps)

• Higher order Markov chains can be transformed to the first order chain

• Also called Markov chain or Markov process

• Joint distribution P(X0,…, XT) = P(X0) t P(Xt | Xt-1)

X1X0 X2 X3

P(X0) P(Xt | X0:t-1) = P(Xt | Xt-1)

Are Markov models a special case of Bayes nets?

• Yes and no!

• Yes:
• Directed acyclic graph, joint = product of conditionals

• No:
• Infinitely many variables (unless we truncate)

• Repetition of transition model not part of standard Bayes net
syntax

• They are “growable” Bayes nets

5

Example: Random walk in one dimension

• State: location on the unbounded integer line

• Initial probability: starts at 0

• Transition model: P(Xt = k| Xt-1= k±1) = 0.5

• Applications: particle motion in crystals, stock prices, gambling,
genetics, etc.

• Questions:
• How far does it get as a function of t?

• Expected distance is O(√t)

• Does it get back to 0 or can it go off for ever and not come back?
• In 1D and 2D, returns w.p. 1; in 3D, returns w.p. 0.34053733

6

-4 -3 -2 -1 0 1 2 3 4

Example: n-gram models
• State: word at position t in text (can also build letter n-grams)

• Transition model (probabilities come from empirical frequencies):
• Unigram (zero-order): P(Wordt = i)

• “logical are as are confusion a may right tries agent goal the was . . .”

• Bigram (first-order): P(Wordt = i | Wordt-1= j)
• “systems are very similar computational approach would be represented . . .”

• Trigram (second-order): P(Wordt = i | Wordt-1= j, Wordt-2= k)
• “planning and scheduling are integrated the success of naive bayes model is . . .”

• Applications: text classification, spam detection, author
identification, language classification, speech recognition

7

We call ourselves Homo sapiens—man the wise—because our intelligence is so important to us. For
thousands of years, we have tried to understand how we think; that is, how a mere handful of matter can
perceive, understand, predict, and manipulate a world far larger and more complicated than itself. ….

Example: Web browsing

• State: URL visited at step t

• Transition model:
• With probability p, choose an outgoing link at random

• With probability (1-p), choose an arbitrary new page

• Question: What is the stationary distribution over pages?
• I.e., if the process runs forever, what fraction of time does it spend

in any given page?

• Application: Google page rank

8

Example: Weather
• States {rain, sun}

rain sun

0.9

0.7

0.3

0.1

More ways of representing the same CPT

sun

rain

sun

rain

0.1

0.9

0.7

0.3

Xt-1 P(Xt|Xt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

 Initial distribution P(X0)

 Transition model P(Xt | Xt-1)

P(X0)

sun rain

0.5 0.5

Weather prediction

• Time 0: <0.5, 0.5>

• What is the weather like at time 1?

P(X1) = x0
P(X1, X0=x0)

= x0
P(X0=x0) P(X1| X0=x0)

= 0.5<0.9, 0.1> + 0.5<0.3, 0.7> = <0.6,0.4>

Xt-1 P(Xt|Xt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Weather prediction, contd.

• Time 1: <0.6, 0.4>

• What is the weather like at time 2?

P(X2) = x1
P(X2,X1=x1)

= x1
P(X1=x1) P(X2| X1=x1)

= 0.6<0.9, 0.1> + 0.4<0.3, 0.7> = <0.66, 0.34>

Xt-1 P(Xt|Xt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Weather prediction, contd.

• Time 2: <0.66, 0.34>

• What is the weather like at time 3?

P(X3) = x2
P(X3,X2=x2)

= x2
P(X2=x2) P(X3| X2=x2)

= 0.66<0.9, 0.1> + 0.34<0.3, 0.7> = <0.696, 0.304>

• The influence of initial distribution gets less and less over time.
The distribution much later becomes independent of the initial
distribution

Xt-1 P(Xt|Xt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Homework

P(X0)

sun rain

0 1

Forward algorithm (simple form)

• What is the state at time t?
• P(Xt) = xt-1

P(Xt,Xt-1=xt-1)

• = xt-1
P(Xt-1=xt-1) P(Xt| Xt-1=xt-1)

• Iterate this update starting at t=0
• This is called a recursive update: Pt = g(Pt-1) = g(g(g(g(…P0))))

Transition model

And the same thing in linear algebra

• What is the weather like at time 2?
• P(X2) = 0.6<0.9,0.1> + 0.4<0.3,0.7> = <0.66,0.34>

• In matrix-vector form:

• P(X2) = () () = ()

i.e., multiply by TT, transpose of transition matrix

14

0.9 0.3
0.1 0.7

0.6
0.4

0.66
0.34

Xt-1 P(Xt|Xt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Stationary Distributions

• The limiting distribution is called the stationary distribution P
of the chain

• It satisfies P = P+1 = TT P
• Solving for P in the example:

() () = ()
0.9p + 0.3(1-p) = p

p = 0.75

Stationary distribution is <0.75,0.25> regardless of the starting
distribution

0.9 0.3
0.1 0.7

p
1-p

p
1-p

Hidden Markov Models

• Usually the true state is not observed directly
• An agent maintains a belief state

• Hidden Markov models (HMMs)
• Underlying Markov chain over belief states X

• You observe evidence E at each time step

• Xt is a single discrete variable; Et may be continuous and may consist of
several variables

X5X1X0 X2 X3

E1 E2 E3 E5

Example: Weather HMM
• An HMM is defined by:

• Initial distribution: P(X0)
• Transition model: P(Xt| Xt-1)
• Sensor model: P(Et| Xt)

Umbrellat-1 Umbrellat Umbrellat+1

Weathert-1 Weathert Weathert+1

Wt-1 P(Wt|Wt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Wt P(Ut|Wt)

true false

sun 0.2 0.8

rain 0.9 0.1

HMM as probability model

• Joint distribution for Markov model: P(X0:t) = P(X0) i=1:t P(Xi | Xi-1)

• Joint distribution for hidden Markov model:
P(X0:t, E1:t) = P(X0) i=1:t P(Xi | Xi-1) P(Ei | Xi)
• Future states are independent of the past given the present

• Current evidence is independent of everything else given the current
state

• Are evidence variables independent of each other?

X5X1X0 X2 X3

E1 E2 E3 E5

Useful notation:

Xa:b = Xa , Xa+1, …, Xb

Real HMM Examples

• Speech recognition HMMs:
• Observations are acoustic signals (continuous valued)

• States are specific positions in specific words (so, tens of thousands)

• Machine translation HMMs:
• Observations are words (tens of thousands)

• States are translation options

• Robot tracking:
• Observations are range readings (continuous)

• States are positions on a map (continuous)

Inference tasks

• Filtering: P(Xt|e1:t)
• belief state—input to the decision process of a rational agent

• Prediction: P(Xt+k|e1:t) for k > 0
• evaluation of possible action sequences; like filtering without the

evidence

• Smoothing: P(Xk|e1:t) for 0 ≤ k < t
• better estimate of past states, essential for learning

• Most likely explanation: arg maxx1:t
P(x1:t | e1:t)

• speech recognition, decoding with a noisy channel

21

Inference tasks

X2

e1

X1 X3 X4

e2 e3 e4

X2

e1

X1 X3 X4

e2 e3 e4

X2

e1

X1 X3 X4

e2 e3 e4

X2

e1

X1 X3 X4

e2 e3

Prediction: P(Xt+k|e1:t)

Smoothing: P(Xk|e1:t), k<t Explanation: P(X1:t|e1:t)

Filtering: P(Xt|e1:t)

Filtering / Monitoring

• Filtering, or monitoring, or state estimation, is the task of
maintaining the distribution f1:t = P(Xt|e1:t) over time

• We start with f0 in an initial setting, usually uniform

• Filtering is a fundamental task in engineering and science

• The Kalman filter (continuous variables, linear dynamics,
Gaussian noise) was invented in 1960 and used for
trajectory estimation in the Apollo program
• Core ideas used by Gauss for planetary observations

• 788,000 papers on Google Scholar

Example: Robot Localization

10Prob

Example from
Michael Pfeiffer

t=0

Sensor model: four bits for wall/no-wall in each direction, never more than 1 mistake

Transition model: action may fail with small prob.

Example: Robot Localization

10Prob

t=1

Lighter grey: was possible to get the reading, but less likely (required 1 mistake)

Example: Robot Localization

t=2

10Prob

Example: Robot Localization

t=3

10Prob

Example: Robot Localization

t=4

10Prob

Example: Robot Localization

t=5

10Prob

Filtering algorithm

• Aim: devise a recursive filtering algorithm of the form
• P(Xt+1|e1:t+1) = g(et+1, P(Xt|e1:t))

• P(Xt+1|e1:t+1) =

Filtering algorithm

• Aim: devise a recursive filtering algorithm of the form
• P(Xt+1|e1:t+1) = f(et+1, P(Xt|e1:t))

• P(Xt+1|e1:t+1) = P(Xt+1|e1:t, et+1)

31

Filtering algorithm

• Aim: devise a recursive filtering algorithm of the form
• P(Xt+1|e1:t+1) = f(et+1, P(Xt|e1:t))

• P(Xt+1|e1:t+1) = P(Xt+1|e1:t, et+1)

= α P(et+1|Xt+1, e1:t) P(Xt+1| e1:t)

32

Apply Bayes’ rule

Filtering algorithm

• Aim: devise a recursive filtering algorithm of the form
• P(Xt+1|e1:t+1) = f(et+1, P(Xt|e1:t))

• P(Xt+1|e1:t+1) = P(Xt+1|e1:t, et+1)

= α P(et+1|Xt+1, e1:t) P(Xt+1| e1:t)

= α P(et+1|Xt+1) P(Xt+1| e1:t)

33

Apply sensor Markov conditional
independence

Filtering algorithm

• Aim: devise a recursive filtering algorithm of the form
• P(Xt+1|e1:t+1) = f(et+1, P(Xt|e1:t))

• P(Xt+1|e1:t+1) = P(Xt+1|e1:t, et+1)

= α P(et+1|Xt+1, e1:t) P(Xt+1| e1:t)

= α P(et+1|Xt+1) P(Xt+1| e1:t)

= α P(et+1|Xt+1) xt
P(xt | e1:t) P(Xt+1| xt, e1:t)

34

Condition on Xt

Filtering algorithm

• Aim: devise a recursive filtering algorithm of the form
• P(Xt+1|e1:t+1) = f(et+1, P(Xt|e1:t))

• P(Xt+1|e1:t+1) = P(Xt+1|e1:t, et+1)

= α P(et+1|Xt+1, e1:t) P(Xt+1| e1:t)

= α P(et+1|Xt+1) P(Xt+1| e1:t)

= α P(et+1|Xt+1) xt
P(xt | e1:t) P(Xt+1| xt, e1:t)

= α P(et+1|Xt+1) xt
P(Xt+1| xt) P(xt | e1:t)

35

Transition modelSensor modelNormalize

Apply conditional
independence

Recursion

Filtering algorithm

• P(Xt+1|e1:t+1) = α P(et+1|Xt+1) xt
P(xt | e1:t) P(Xt+1| xt)

• f1:t+1 = FORWARD(f1:t , et+1)

• Cost per time step: O(|X|2) where |X| is the number of states

• Time and space costs are constant, independent of t

• O(|X|2) is infeasible for models with many state variables

• We get to invent really cool approximate filtering algorithms

36

PredictUpdateNormalize

And the same thing in linear algebra

• Transition matrix T, observation matrix Ot

• Observation matrix has state likelihoods for Et along diagonal

• E.g., for U1 = true, O1 = ()
• Filtering algorithm becomes

• f1:t+1 = α Ot+1T
T f1:t

37

Xt-1 P(Xt|Xt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Wt P(Ut|Wt)

true false

sun 0.2 0.8

rain 0.9 0.1

0.2 0
0 0.9

Example: Weather HMM

Umbrella1 Umbrella2

Weather0 Weather1 Weather2

f(sun) = 0.5
f(rain) = 0.5

0.6
0.4

f(sun) = 0.25
f(rain) = 0.75

0.45
0.55

f(sun) = 0.154
f(rain) = 0.846

Wt-1 P(Wt|Wt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Wt P(Ut|Wt)

true false

sun 0.2 0.8

rain 0.9 0.1

P(W0)

sun rain

0.5 0.5

predict predict

update update

Most Likely Explanation

Inference tasks

• Filtering: P(Xt|e1:t)
• belief state—input to the decision process of a rational

agent

• Prediction: P(Xt+k|e1:t) for k > 0
• evaluation of possible action sequences; like filtering

without the evidence

• Smoothing: P(Xk|e1:t) for 0 ≤ k < t

• better estimate of past states, essential for learning

• Most likely explanation: arg maxx1:t
P(x1:t | e1:t)

• speech recognition, decoding with a noisy channel
40

Most likely explanation = most probable path

• State trellis: graph of states and transitions over time

• Each arc represents some transition xt-1  xt

• Each arc has weight P(xt | xt-1) P(et | xt)
• Arcs to initial states have weight P(x0))

• The product of weights on a path is proportional to that
state sequence’s probability

• Forward algorithm computes sums of paths, Viterbi
algorithm computes best paths

arg maxx1:t
P(x1:t | e1:t)

= arg maxx1:t
α P(x1:t , e1:t)

= arg maxx1:t
P(x1:t , e1:t)

= arg maxx1:t
P(x0) t P(xt | xt-1) P(et | xt)

sun

rain

sun

rain

sun

rain

sun

rain

X0 X1 … XT

Forward / Viterbi algorithms

Forward Algorithm (sum)
For each state at time t, keep track
of the total probability of all paths
to it

sun

rain

sun

rain

sun

rain

sun

rain

X0 X1 … XT

Viterbi Algorithm (max)
For each state at time t, keep
track of the maximum probability
of any path to it

f1:t+1 = FORWARD(f1:t , et+1)
= α P(et+1|Xt+1) xt

P(Xt+1| xt) f1:t

m1:t+1 = VITERBI(m1:t , et+1)
= P(et+1|Xt+1) maxxt

P(Xt+1| xt) m1:t

Viterbi algorithm contd.

Time complexity?
O(|X|2 T)

X0 X1 X2 XT

sun

rain

sun

rain

sun

rain

sun

rain

Wt-1 P(Wt|Wt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Wt P(Ut|Wt)

true false

sun 0.2 0.8

rain 0.9 0.1
U1=true U2=false U3=true

0.5

0.5

0.18

0.63

0.09

0.06

0.72

0.07

0.01

0.24

0.18

0.63

0.09

0.06

Space complexity?
O(|X| T)

0.5

0.5

0.09

0.315

0.076

0.022

0.0136080

0.0138495

Number of paths?
O(|X|T)

Viterbi in negative log space

argmax of product of probabilities
= argmin of sum of negative log probabilities
= minimum-cost path

sun

rain

sun

rain

sun

rain

sun

rain

Wt-1 P(Wt|Wt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Wt P(Ut|Wt)

true false

sun 0.2 0.8

rain 0.9 0.1

1.0

1.0

2.47

0.67

3.47

4.06

0.72

3.84

6.64

2.06

2.47

0.67

3.47

4.06
S

G

Viterbi is essentially breadth-first graph search
What about A*?

Next time

• Chapter 16. Utility theory

