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Uncertainty and Time
• Often, we want to reason about a sequence of observations where 

the state of the underlying system is changing

• Speech recognition

• Robot localization

• User attention

• Medical monitoring

• Global climate

• Need to introduce time into our models



Markov Models (aka Markov chain/process)

• Value of X at a given time is called the state (usually discrete, 
finite)

• Transition model: P(Xt | Xt-1) how the state evolves over time 

• Stationarity assumption: transition probabilities are the same 
at all times

X1X0 X2 X3

P(X0) P(Xt | Xt-1)



Markov Models (aka Markov chain/process)

• Markov assumption: “future is independent of the past given the 
present”

• Xt+1 is independent of X0,…, Xt-1 given Xt
• This is a first-order Markov model (a kth-order model allows 

dependencies on k earlier steps)

• Joint distribution P(X0,…, XT) = P(X0) t P(Xt | Xt-1)

X1X0 X2 X3

P(X0) P(Xt | Xt-1)



Are Markov models a special case of Bayes nets?

• Yes and no!

• Yes:
• Directed acyclic graph, joint = product of conditionals

• No:
• Infinitely many variables (unless we truncate)

• Repetition of transition model not part of standard Bayes net 
syntax
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Reminder: elementary probability

• Basic laws: 0  P()  1        P() = 1

• Events: subsets of : P(A) =   A P()

• Random variable X() has a value in each 

• Distribution P(X) gives probability for each possible value x

• Joint distribution P(X,Y) gives total probability for each combination 
x,y

• Summing out/marginalization: P(X=x) = y P(X=x,Y=y)
• Conditional probability: P(X|Y) = P(X,Y)/P(Y)
• Product rule: P(X|Y)P(Y)  =  P(X,Y)  =  P(Y|X)P(X)

• Generalize to chain rule: P(X1,..,Xn)  =  i P(Xi | X1,..,Xi-1)
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Probabilistic Inference

• Probabilistic inference: compute a desired probability 
from a probability model

• Typically for a query variable given evidence

• E.g., P(airport on time | no accidents) = 0.90

• These represent the agent’s beliefs given the evidence

• Probabilities change with new evidence
• P(airport on time | no accidents, 5 a.m.) = 0.95

• P(airport on time | no accidents, 5 a.m., raining) = 0.80

• Observing new evidence causes beliefs to be updated



Inference by Enumeration
• Probability model  P(X1, …, Xn) is given

• Partition the variables X1, …, Xn into sets as follows:
• Evidence variables: E = e

• Query variables: Q

• Hidden variables: H

 We want:
P(Q | e)

 Step 1: Select the 
entries consistent with 
the evidence

 Step 2: Sum out H from model to 
get joint of query and evidence

 Step 3: Normalize

h P(Q , h, e)P(Q ,e) = 

X1, …, Xn

P(Q | e) =  P(Q ,e)



Inference by Enumeration
• P(W)?

• P(W | winter)?

• P(W | winter, cold)?

Season Temp Weather P

summer hot sun 0.35

summer hot rain 0.01

summer hot fog 0.01

summer hot meteor 0.00

summer cold sun 0.01

summer cold rain 0.05

summer cold fog 0.10

summer cold meteor 0.00

winter hot sun 0.10

winter hot rain 0.01

winter hot fog 0.01

winter hot meteor 0.00

winter cold sun 0.10

winter cold rain 0.10

winter cold fog 0.15

winter cold meteor 0.00



Issues with Inference by Enumeration

• Worst-case time complexity O(dn) 
• exponential in the number of hidden variables

• Space complexity O(dn) to store the joint distribution

• O(dn) data points to estimate the entries in the joint 
distribution



Bayes’ Rule
• Write the product rule both ways:

P(a | b) P(b) = P(a, b) = P(b | a) P(a)  

• Dividing left and right expressions, we get:

• Why is this at all helpful?

• Lets us build one conditional from its reverse
• Often one conditional is tricky but the other one is simple
• Describes an “update” step from prior P(a) to posterior P(a | b) 
• Foundation of many systems we’ll see later (e.g. ASR, MT)

• In the running for most important AI equation!

P(a | b) = P(b | a) P(a)
P(b)



Inference with Bayes’ Rule
• Example: Diagnostic probability from causal probability:

• Example:
• M: meningitis, S: stiff neck

• Note: posterior probability of meningitis still very small: 0.008 (80x bigger – why?)

• Note: you should still get stiff necks checked out!  Why?

Example givens

P(cause | effect) = P(effect | cause) P(cause)
P(effect)

P(s | m) = 0.8
P(s | ¬m) = 0.01
P(m) = 0.0001

P(m | s) = P(s | m) P(m)
P(s)

≃
0.8 x 0.0001 

0.01



Independence
• Two variables X and Y are (absolutely) independent if

x,y P(x, y) = P(x) P(y)

• I.e., the joint distribution factors into a product of two simpler distributions

• Equivalently, via the product rule P(x,y) = P(x|y) P(y),

P(x | y) = P(x)    or    P(y | x) = P(y)

• Example: two dice rolls Roll1 and Roll2
• P(Roll1=5, Roll2=3)     =   P(Roll1=5) P(Roll2=3)  =  1/6 x 1/6  =  1/36

• P(Roll2=3 | Roll1=5)   =   P(Roll2=3)



Conditional Independence
• Conditional independence is our most basic and robust 

form of knowledge about uncertain environments.

• X is conditionally independent of Y given Z if and only if: 

x,y,z P(x | y, z) = P(x | z)

or, equivalently, if and only if

x,y,z P(x, y | z) = P(x | z) P(y | z)



Conditional Independence
• What about this domain:

• Fire
• Smoke
• Alarm



Conditional Independence
• What about this domain:

• Cavity
• Toothache
• Catch
• Weather



Bayes Nets: Big Picture

• Bayes nets: a technique for describing complex joint 
distributions (models) using simple, conditional distributions

• A subset of the general class of graphical models

• Use local causality/conditional independence: 
• the world is composed of many variables, 

• each interacting locally with a few others



Bayes Nets

• Part I: Representation

• Part II: Exact inference

• Enumeration (always exponential complexity)

• Variable elimination (worst-case exponential complexity, often 
better)

• Inference is NP-hard in general



Graphical Model Notation

• Nodes: variables (with domains)
• Can be assigned (observed) or unassigned (unobserved)

• Arcs: interactions
• Indicate “direct influence” between variables

• Formally: absence of arc encodes conditional independence (more 
later)

Weather



Example: Coin Flips

• N independent coin flips

• No interactions between variables: absolute independence

X1 X2 Xn



Example: Smoke alarm

• Variables:
• F: There is fire

• S: There is smoke

• A: Alarm sounds

F

S

A



Bayes Net Syntax

• A set of nodes, one per variable Xi

• A directed, acyclic graph

• A conditional distribution for each node given its parent 
variables in the graph

• CPT (conditional probability table); each row is a distribution for 
child given values of its parents

Bayes net = Topology (graph) + Local Conditional Probabilities



Example: Alarm Network

Burglary Earthquake

Alarm

John 
calls

Mary 
calls

P(B)

true false

0.001 0.999

B E P(A|B,E)

true false

true true 0.95 0.05

true false 0.94 0.06

false true 0.29 0.71

false false 0.001 0.999

A P(J|A)

true false

true 0.9 0.1

false 0.05 0.95

P(E)

true false

0.002 0.998

A P(M|A)

true false

true 0.7 0.3

false 0.01 0.99

Number of free parameters 
in each CPT:
1. Parent range sizes d1,…,dk

2. Child range size d 
3. Each row must sum to 1

(d-1) Πi di

1 1

4
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General formula for sparse BNs

• Suppose
• n variables

• Maximum range size is d

• Maximum number of parents is k

• Full joint distribution has size O(dn)

• Bayes net has size O(n .dk)
• Linear scaling with n as long as causal structure is local
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Bayes net global semantics

• Bayes nets encode joint distributions as product of conditional 
distributions on each variable:

• P(X1,..,Xn)  =  i P(Xi | Parents(Xi))



P(B)

true false

0.001 0.999

Example
P(b,e, a, j, m) =

29

B E P(A|B,E)

true false

true true 0.95 0.05

true false 0.94 0.06

false true 0.29 0.71

false false 0.001 0.999

A P(J|A)

true false

true 0.9 0.1

fals
e

0.05 0.95

P(E)

true false

0.002 0.998

A P(M|A)

true false

true 0.7 0.3

false 0.01 0.99

P(b) P(e) P(a|b,e) P(j|a) P(m|a) 

=.001x.998x.94x.1x.3=.000028 

Burglary Earthquake

Alarm

John 
calls

Mary 
calls



Conditional independence in BNs

• Compare the Bayes net global semantics

P(X1,..,Xn)  =  i P(Xi | Parents(Xi))

with the chain rule identity

P(X1,..,Xn)  =  i P(Xi | X1,…,Xi-1)



Conditional independence in BNs

• Let X1,..,Xn be sorted in topological order according to the 
graph, i.e., parents before children, so 

Parents(Xi)  X1,…,Xi-1

• So the Bayes net asserts conditional independences 

P(Xi | X1,…,Xi-1) = P(Xi | Parents(Xi))

• To ensure these are valid, choose parents for node Xi

that “shield” it from other predecessors

• P(M | J, A, E, B) = P (M | A)



Conditional independence semantics

• Every variable is conditionally independent of its non-
descendants given its parents 

• Markov blanket: parents, children and children’s parents

• Conditional independence semantics <=> global semantics
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Example: Burglary

• Burglary

• Earthquake

• Alarm

33

Burglary Earthquake

Alarm

??

P(B)

true false

0.001 0.999

B E P(A|B,E)

true false

true true 0.95 0.05

true false 0.94 0.06

false true 0.29 0.71

false false 0.001 0.999

P(E)

true false

0.002 0.998



Example: Burglary

• Alarm

• Burglary

• Earthquake
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Burglary Earthquake

Alarm

?

?

?

P(A)

true false

A B P(E|A,B)

true false

true true

true false

false true

false false

A P(B|A)

true false

true

false

?
?



Inference by Enumeration in Bayes Net

• Reminder of inference by enumeration
• Any probability of interest can be computed by summing entries 

from the joint distribution: P(Q | e) =  h P(Q , h, e)

• Entries from the joint distribution can be obtained from a BN by 
multiplying the corresponding conditional probabilities

• P(B | j, m) =  α e aP(B, e, a, j, m) 

=  α e aP(B) P(e) P(a | B,e) P(j | a) P(m | a)

• So inference in Bayes nets means computing sums of 
products of numbers: sounds easy!!

• Problem: sums of exponentially many products!
B E

A

MJ



Inference by Enumeration in Bayes Net

• P(B | j, m) =  α e a P(B, e, a, j, m) 

=  α e,a P(B) P(e) P(a | B, e) P(j | a) P(m | a)

• P (b | j, m) = α * 0.00059224, P (¬b | j, m) = α * 0.0014919
• P(B | j, m) = < 0.284, 0.716>

B E

A

MJ



Can we do better?

e,a P(B) P(e) P(a|B,e) P(j|a) P(m|a)

= P(B)P(e)P(a|B,e)P(j|a)P(m|a) + P(B)P(e)P(a|B,e)P(j|a)P(m|a)

+ P(B)P(e)P(a|B,e)P(j|a)P(m|a) +     
P(B)P(e)P(a|B,e)P(j|a)P(m|a)

Lots of repeated subexpressions!
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Can we do better?

• Consider uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz
• 16 multiplies, 7 adds

• Lots of repeated subexpressions!

• Rewrite as (u+v)(w+x)(y+z)
• 2 multiplies, 3 adds
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Variable elimination: The basic ideas
• Eliminate repeated calculations

• Move summations inwards as far as possible
P(B | j, m) =  α e,a P(B) P(e) P(a | B, e) P(j | a) P(m | a)

=  α P(B) e P(e) a P(a | B, e) P(j | a) P(m | a)

• Do the calculation from the inside out
• i.e., sum over a first, then sum over e
• Problem: P(a | B, e) isn’t a single number, it’s a bunch of 

different numbers depending on the values of B and e
• Solution: use arrays of numbers (of various 

dimensions) with appropriate operations on them; 
these are called factors
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Factors

• Joint distribution: P(X,Y)
• Entries P(x,y) for all x, y

• |X| x |Y| matrix

• Sums to 1

• Projected joint: P(x,Y)
• A slice of the joint distribution

• Entries P(x,y) for one x, all y

• |Y|-element vector

• Sums to P(x)

A \ J true false

true 0.09 0.01

false 0.045 0.855

P(A,J)

P(a,J) = Pa(J)

Number of random variables (Capitals) = table’s dimensionality

A \ J true false

true 0.09 0.01



Factors

• Single conditional: P(Y | x)
• Entries P(y | x) for fixed x, all y

• Sums to 1

• Family of conditionals: 

• P(X | Y)
• Multiple conditionals

• Entries P(x | y) for all x, y

• Sums to |Y|

A \ J true false

true 0.9 0.1

P(J|a)

A \ J true false

true 0.9 0.1

false 0.05 0.95

P(J|A)

} - P(J|a)

} - P(J|a)



Operation 1: Pointwise product

• First basic operation: pointwise product of factors (similar to a 
database join, not matrix multiply!)

• New factor has union of variables of the two original factors

• Each entry is the product of the corresponding entries from the 
original factors

P(J|A)  x  P(A)  =  P(A,J)

• Example:

P(J|A)
P(A)

P(A,J)

A \ J true false

true 0.09 0.01

false 0.045 0.855

A \ J true false

true 0.9 0.1

false 0.05 0.95

true 0.1

false 0.9 x =



Operation 1: Pointwise product

• f(X1, …, Xj, Y1, …, Yk) * g(Y1, …, Yk, Z1, …, Zl) = h(X1, …, Xj, Y1, …, Yk, Z1, …, 
Zl) 

• If all variables are binary, the pointwise product g has 2j+k+l entries



Example: Making larger factors

• Example: P(A,J)  x  P(A,M)  =  P(A,J,M)

P(A,J)

A \ J true false

true 0.09 0.01

false 0.045 0.855

x =

P(A,M)

A \ M true false

true 0.07 0.03

false 0.009 0.891
A=true

A=false

P(A,J,M)



Making larger factors

• Example: P(U,V)  x  P(V,W) x  P(W,X)  =  P(U,V,W,X)

• Sizes: [10,10]  x  [10,10] x  [10,10] =  [10,10,10,10] 
• i.e., 300 numbers blows up to 10,000 numbers!

• Factor blowup can make VE very expensive



Operation 2: Summing out a variable

• Second basic operation: summing out (or eliminating) a 
variable from a factor

• Shrinks a factor to a smaller one

• Example: j  P(A,J) = P(A,j) + P(A,j) = P(A) 

A \ J true false

true 0.09 0.01

false 0.045 0.855

true 0.1

false 0.9

P(A)
P(A,J)

Sum out J



Summing out from a product of factors

• Project the factors each way first, then sum the products
Example: 

a P(a|B,e) x P(j|a) x P(m|a)

= P(a|B,e) x P(j|a) x P(m|a) 
+ P(a|B,e) x P(j|a) x P(m|a)



Variable Elimination

• Query: P(Q | E1=e1, ..., Ek=ek) 

• Start with initial factors:
• Local CPTs (but instantiated by evidence)

• While there are still hidden variables (not Q or evidence):
• Pick a hidden variable Hj

• Eliminate (sum out) Hj from the product of all factors mentioning 
Hj

• Join all remaining factors and normalize

X α



Example

Choose A

P(B)     P(E)     P(A|B,E) P(j|A)     P(m|A)

Query P(B | j,m) 

P(A|B,E)
P(j|A)
P(m|A)

P(j,m|B,E)

P(B)     P(E)     P(j,m|B,E)



Example

Query P(B | j,m) 

Normalize

Choose E

P(E)
P(j,m|B,E)

P(j,m|B)

P(B)     P(E)     P(j,m|B,E)

Finish with B

P(B)
P(j,m|B) P(j,m,B)

P(B)     P(j,m|B)

P(B | j,m)



Order matters

• Order the terms Z, A, B C, D
P(D) =  α z,a,b,c P(z) P(a|z) P(b|z) P(c|z) P(D|z)

=  α z P(z) a P(a|z) b P(b|z) c P(c|z) P(D|z)

• Largest factor has 2 variables (D,Z)

• Order the terms A, B C, D, Z
P(D) =  α a,b,c,z P(a|z) P(b|z) P(c|z) P(D|z) P(z) 

=  α a b c z P(a|z) P(b|z) P(c|z) P(D|z) P(z)

• Largest factor has 4 variables (A,B,C,D)

• In general, with n leaves, factor of size 2n

• Finding optimal ordering is intractable!

D

Z

A B C



Order matters

• Exercise: P(J | b) = ?



Order matters

• Exercise: P(J | b) = α P(b) eP(e) aP(a | b, e) P(J | a) mP(m|a)

• Every variable that is not an ancestor of query or evidence 
does not matter

• M in this example



VE: Computational and Space Complexity

• The computational and space complexity of variable elimination 
is determined by the largest factor (and it’s space that kills you)

• The elimination ordering can greatly affect the size of the 
largest factor.  

• E.g., previous slide’s example 2n vs. 2

• Does there always exist an ordering that only results in small 
factors?

• No!



Polytrees

• A polytree is a directed graph with no undirected cycles

• For polytrees the complexity of variable elimination is linear in 
the network size (number of CPT entries) if you eliminate from 
the leave towards the roots



Worst Case Complexity - Reduction from SAT

• Variables: W, X, Y, Z

• CNF clauses:
1. C1 = W v X v Y
2. C2 = Y v Z v  W
3. C3 = X v Y v Z

• Sentence S = C1  C2 C3

• P(S) > 0 iff S is satisfiable
• => NP-hard

• P(S) = K x 0.5n where K is the number of satisfying 
assignments for clauses

• => #P-hard

S

C1 C2 C3




W X Y Z

0.5 0.50.50.5



Summary

• Independence and conditional independence are important 
forms of probabilistic knowledge

• Bayes net encode joint distributions efficiently by taking 
advantage of conditional independence

• Global joint probability = product of local conditionals

• Exact inference = sums of products of conditional probabilities 
from the network
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Next time

• Markov models

• Hidden Markov models


