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Uncertainty

• The real world is rife with uncertainty!
• E.g., if I leave for SFO 60 minutes before my flight, will I be there in time?

• Problems:
• partial observability (road state, other drivers’ plans, etc.)

• noisy sensors (radio traffic reports, Google maps)

• immense complexity of modelling and predicting traffic, security line, etc.

• lack of knowledge of world dynamics (will tire burst? need COVID test?)

• Probabilistic assertions summarize effects of ignorance and laziness

• Combine probability theory + utility theory -> decision theory
• Maximize expected utility : a* = argmaxa s P(s | a) U(s)



Basic laws of probability

• Begin with a set  of possible worlds
• E.g., 6 possible rolls of a die, {1, 2, 3, 4, 5, 6}

• A probability model assigns a number P() to each 
world 

• E.g., P(1) = P(2) = P(3) = P(5) = P(5) = P(6) = 1/6. 

• These numbers must satisfy
• 0  P()  1

•   P() = 1

1/6

1/6

1/61/6

1/6
1/6



Basic laws contd.

• An event is any subset of 
• E.g., “roll < 4” is the set {1,2,3}

• E.g., “roll is odd” is the set {1,3,5}

• The probability of an event is the sum of probabilities over its 
worlds

• P(A) =   A P()

• E.g., P(roll < 4) = P(1) + P(2) + P(3) = 1/2

• De Finetti (1931): anyone who bets according to probabilities 
that violate these laws can be forced to lose money on every 
set of bets

• No rational agent can have beliefs that violate probability axioms



Random Variables

• A random variable is some aspect of the world about which we 
(may) be uncertain

• Formally a deterministic function of 

• The range of a random variable is the set of possible values
• Odd = Is the dice roll an odd number?  {true, false} 

• e.g. Odd(1)=true, Odd(6) = false

• often write the event Odd=true as odd, Odd=false as odd

• T = Is it hot or cold?  {hot, cold}

• D = How long will it take to get to the airport?  [0, )

• LWumpus = Where is the wumpus?  {(0,0), (0,1), …}



Random Variables

• The probability distribution of a random variable X gives the 
probability for each value x in its range (probability of the event 
X=x)

• P(X=x) =  {: X()=x} P()

• P(x) for short (when unambiguous)

• P(X) refers to the entire distribution (think of it as a vector or 
table)



 Temperature: 

Probability Distributions

• Associate a probability with each value; sums to 1

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.1

fog 0.3

meteor 0.0

 Weather: 

P(T) P(W) P(T,W)

 Joint distribution

Temperature

hot cold

W
ea

th
er

sun 0.45 0.15

rain 0.02 0.08

fog 0.03 0.27

meteor 0.00 0.00



Making possible worlds

• In many cases we 
• begin with random variables and their domains

• construct possible worlds as assignments of values to all variables

• E.g., two dice rolls Roll1 and Roll2
• How many possible worlds?

• What are their probabilities?

• Size of distribution for n variables with range size d:
• For all but the smallest distributions, cannot write out by hand!

dn



Probabilities of events
• Recall that the probability of an event is 

the sum of probabilities of its worlds:
P(A) =   A  P()

• So, given a joint distribution over all 
variables, can compute any event 
probability!

• Probability that it’s hot AND sunny?

• Probability that it’s hot?

• Probability that it’s hot OR not foggy?

P(T, W)

 Joint distribution

Temperature

hot cold

W
ea

th
er

sun 0.45 0.15

rain 0.02 0.08

fog 0.03 0.27

meteor 0.00 0.00



Marginal Distributions

• Marginal distributions are sub-tables which 
eliminate variables 

• Marginalization (summing out): Collapse a 
dimension by adding

P(X=x) = 
y  

P(X=x, Y=y)
Temperature

hot cold

W
ea

th
e

r

sun 0.45 0.15

rain 0.02 0.08

fog 0.03 0.27

meteor 0.00 0.00

0.60

0.10

0.30

0.00

0.50 0.50

P(T)

P(W)



Marginal Distributions

P(X=x) = 
y  

P(X=x, Y=y)

• P (cavity) = ?



Temperature

hot cold

W
ea

th
er

sun 0.45 0.15

rain 0.02 0.08

fog 0.03 0.27

meteor 0.00 0.00

Conditional Probabilities

• A simple relation between joint and conditional probabilities

• In fact, this is taken as the definition of conditional probability
P(b)P(a)

P(a,b)

P(T, W)

P(a | b)  = P(a, b)
P(b)

P(W=s | T=c) = ? 



Temperature

hot cold

W
ea

th
er

sun 0.45 0.15

rain 0.02 0.08

fog 0.03 0.27

meteor 0.00 0.00

Conditional Probabilities

• A simple relation between joint and conditional probabilities

• In fact, this is taken as the definition of conditional probability
P(b)P(a)

P(a,b)

= P(W=s, T=c) + P(W=r, T=c) + P(W=f, T=c) + P(W=m, T=c) 
= 0.15 + 0.08 + 0.27 + 0.00= 0.50

P(T, W)

P(a | b) = P(a, b)
P(b)

P(W=s | T=c) = P(W=s, T=c)
P(T=c)

= 0.15/0.50 = 0.3



Conditional Distributions

• Distributions for one set of variables given another set

Temperature

hot cold

W
ea

th
er

sun 0.45 0.15

rain 0.02 0.08

fog 0.03 0.27

meteor 0.00 0.00

P(W | T=c)

0.30

0.16

0.54

0.00

P(W | T=h)

0.90

0.04

0.06

0.00

P(W | T)

0.30

0.16

0.54

0.00

0.90

0.04

0.06

0.00

hot cold hot cold



• (Dictionary) To bring or restore to a normal condition

• Procedure:
• Multiply each entry by  = 1/(sum over all entries)

Normalizing a distribution

All entries sum to ONE

 = 1/0.50 = 2

Normalize

Temperature

hot cold

W
ea

th
e

r

sun 0.45 0.15

rain 0.02 0.08

fog 0.03 0.27

meteor 0.00 0.00

P(W, T=c)

0.15

0.08

0.27

0.00

0.30

0.16

0.54

0.00

P(W, T)

P(W | T=c) = P(W, T=c)/P(T=c) =  P(W, T=c)



The Product Rule

• Sometimes have conditional distributions but want the joint

P(a | b) = P(a, b)
P(b)

P(a | b) P(b) = P(a, b) 



The Product Rule: Example

P(W | T) P(T) = P(W, T) 

T P

hot 0.5

cold 0.5

P(T)

P(W | T)

0.30

0.16

0.54

0.00

0.90

0.04

0.06

0.00

hot cold Temperature

hot cold

W
ea

th
er

sun 0.45 0.15

rain 0.02 0.08

fog 0.03 0.27

meteor 0.00 0.00

P(W, T)



The Chain Rule

• A joint distribution can be written as a product of conditional 
distributions by repeated application of the product rule

P(x1, x2, x3) = P(x3 | x1, x2) P(x1, x2) = P(x3 | x1, x2) P(x2 | x1) P(x1)
or,
P(x1, x2,…, xn) = 

i
P(xi | x1,…, xi-1)



Probabilistic Inference

• Probabilistic inference: compute a desired 
probability from a probability model

• Typically for a query variable given evidence

• E.g., P(airport on time | no accidents) = 0.90

• These represent the agent’s beliefs given the evidence

• Probabilities change with new evidence:
• P(airport on time | no accidents, 5 a.m.) = 0.95

• P(airport on time | no accidents, 5 a.m., raining) = 0.80

• Observing new evidence causes beliefs to be updated



Inference by Enumeration
• Probability model  P(X1, …, Xn) is given

• Partition the variables X1, …, Xn into sets as follows:
• Evidence variables: E = e

• Query variables: Q

• Hidden variables: H

 We want:
P(Q | e)

 Step 1: Select the 
entries consistent with 
the evidence

 Step 2: Sum out H from model to 
get joint of query and evidence

 Step 3: Normalize

h P(Q , h, e)P(Q ,e) = 

X1, …, Xn

P(Q | e) =  P(Q ,e)



Inference by Enumeration

• P(W)?

Season Temp Weather P

summer hot sun 0.35

summer hot rain 0.01

summer hot fog 0.01

summer hot meteor 0.00

summer cold sun 0.01

summer cold rain 0.05

summer cold fog 0.10

summer cold meteor 0.00

winter hot sun 0.10

winter hot rain 0.01

winter hot fog 0.01

winter hot meteor 0.00

winter cold sun 0.10

winter cold rain 0.10

winter cold fog 0.15

winter cold meteor 0.00



Inference by Enumeration

• P(W)?

• P(W | winter)?

• P(W | winter, cold)?

Season Temp Weather P

summer hot sun 0.35

summer hot rain 0.01

summer hot fog 0.01

summer hot meteor 0.00

summer cold sun 0.01

summer cold rain 0.05

summer cold fog 0.10

summer cold meteor 0.00

winter hot sun 0.10

winter hot rain 0.01

winter hot fog 0.01

winter hot meteor 0.00

winter cold sun 0.10

winter cold rain 0.10

winter cold fog 0.15

winter cold meteor 0.00



Inference by Enumeration

P(X=x) = 
y  

P(X=x, Y=y)

• P ( cavity | toothache) = ?

• P (¬cavity | toothache) = ?



Issues with Inference by Enumeration

• Worst-case time complexity O(dn) 
• exponential in the number of hidden variables

• Space complexity O(dn) to store the joint distribution

• All the joint distribution entries must be estimated 
separately. That is O(dn) data points to estimate!

• We will use conditional independence to improve the 
inference complexity



Next time

• Bayes’ Rule

• Conditional independence

• Bayesian networks

• Elementary inference in Bayesian networks


