
## CSE 518 - Artificial Intelligence Homework

Instructor: Shashi Prabh

## **Chapter 17. Making Complex Decisions, MDP**

**17.1** For the  $4 \times 3$  world shown in Figure 1, calculate which squares can be reached from (1,1) by the action sequence [Up, Up, Right, Right, Right] and with what probabilities. Explain how this computation is related to the prediction task (see Section 14.2) for a hidden Markov model.





**17.2** Select a specific member of the set of policies that are optimal for R(s) > 0 as shown in Figure 2(b), and calculate the fraction of time the agent spends in each state, in the limit, if the policy is executed forever.

**17.3** Suppose that we define the utility of a state sequence to be the *maximum* reward obtained in any state in the sequence. Show that this utility function does not result in stationary preferences between state sequences. Is it still possible to define a utility function on states such that MEU decision making gives optimal behavior?

**17.4** Sometimes MDPs are formulated with a reward function R(s, a) that depends on the action taken or with a reward function R(s, a, s') that also depends on the outcome state.

- a. Write the Bellman equations for these formulations.
- **b**. Show how an MDP with reward function R(s, a, s') can be transformed into a different MDP with reward function R(s, a), such that optimal policies in the new MDP correspond exactly to optimal policies in the original MDP.

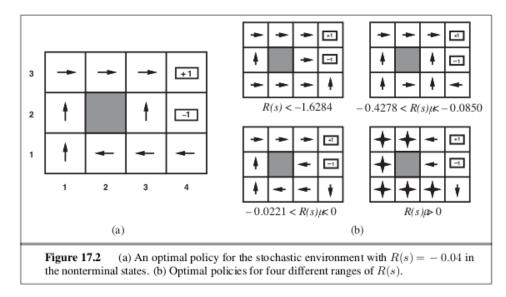



Figure 2: Exercise 17.2

**c**. Now do the same to convert MDPs with R(s, a) into MDPs with R(s).