CSE 518 - Artificial Intelligence
Homework

Instructor: Shashi Prabh

Chapter 14. Probabilistic reasining over time, HMM

14.1 Show that any second-order Markov process can be rewritten as a first-order Markov process with
an augmented set of state variables. Can this always be done parsimoniously, i.e., without increasing the
number of parameters needed to specify the transition model?

14.2 In this exercise, we examine what happens to the probabilities in the umbrella world in the limit of
long time sequences.

a. Suppose we observe an unending sequence of days on which the umbrella appears. Show that, as
the days go by, the probability of rain on the current day increases monotonically toward a fixed
point. Calculate this fixed point.

b. Now consider forecasting further and further into the future, given just the first two umbrella ob-
servations. First, compute the probability P (74 |u1,us) for k=1...20 and plot the results. You
should see that the probability converges towards a fixed point. Prove that the exact value of this
fixed point is 0.5.

14.3 Consider the vacuum worlds of Figure 1 (perfect sensing) and Figure 2 (noisy sensing). Suppose that
the robot receives an observation sequence such that, with perfect sensing, there is exactly one possible
location it could be in. Is this location necessarily the most probable location under noisy sensing for
sufficiently small noise probability €? Prove your claim or find a counterexample.

14.4 In Section 14.3.2, the prior distribution over locations is uniform and the transition model assumes
an equal probability of moving to any neighboring square. What if those assumptions are wrong? Suppose
that the initial location is actually chosen uniformly from the northwest quadrant of the room and the Move
action actually tends to move southeast. Keeping the HMM model fixed, explore the effect on localization
and path accuracy as the southeasterly tendency increases, for different values of e.

14.5 Consider a version of the vacuum robot (page 2) that has the policy of going straight for as long
as it can; only when it encounters an obstacle does it change to a new (randomly selected) heading. To
model this robot, each state in the model consists of a (location, heading) pair. Implement this model and
see how well the Viterbi algorithm can track a robot with this model (optional). The robot’s policy is more
constrained than the random-walk robot; does that mean that predictions of the most likely path are more
accurate?



(b) Possible locations of robot After E1= NSW,Ez=NS

Figure 4.18  Possible positions of the mobot, @, (a) after one observation £, = NSW and
(k) after a second observation By = NS, When sensors are noseless and the transition mode |
15 accurale, there are no other possible locations for the robot consistent with this sequence
of two observations.

Figure 1: Exercise 14.3

(b) Posterior distribution over robot location after Eq = NSW, Eo= NS

Figure 15.7  Posteror distribution over robot location: (a) one observation Ey = NSW;
(b} after a second observation Ez = N 5. The size of each disk corresponds to the probability
that the robot is at that location. The sensor error rate 1s € = (0.2,

Figure 2: Exercise 14.3




14.6 A professor wants to know if students are getting enough sleep. Each day, the professor observes
whether the students sleep in class, and whether they have red eyes. The professor has the following
domain theory:

« The prior probability of getting enough sleep, with no observations, is 0.7.

« The probability of getting enough sleep on night ¢ is 0.8 given that the student got enough sleep the
previous night, and 0.3 if not.

« The probability of having red eyes is 0.2 if the student got enough sleep, and 0.7 if not.
» The probability of sleeping in class is 0.1 if the student got enough sleep, and 0.3 if not.

Formulate this information as a dynamic Bayesian network that the professor could use to filter or predict
from a sequence of observations. Then reformulate it as a hidden Markov model that has only a single
observation variable. Give the complete probability tables for the model.

14.7 For the DBN specified in Exercise 14.6 and for the evidence values

e; = not red eyes, not sleeping in class
ey = red eyes, not sleeping in class
e3 = red eyes, sleeping in class

perform the following computations:
a. State estimation: Compute P(EnoughSleep,|e;.;) for each of t = 1,2, 3.
b. Smoothing: Compute P(EnoughSleep,|e1.3) for each of t = 1,2, 3.

c. Compare the filtered and smoothed probabilities for t = 1 and ¢t = 2.

14.8 Suppose that a particular student shows up with red eyes and sleeps in class every day. Given
the model described in Exercise 14.6, explain why the probability that the student had enough sleep the
previous night converges to a fixed point rather than continuing to go down as we gather more days of
evidence. What is the fixed point? Answer this both numerically (by computation) and analytically.



14.9 This exercise analyzes in more detail the persistent-failure model for the battery sensor in Fig-

ure 3(a).

a. Figure 3(b) stops at ¢t =32. Describe qualitatively what should happen as ¢ — oo if the sensor
continues to read 0.

b. Suppose that the external temperature affects the battery sensor in such a way that transient fail-
ures become more likely as temperature increases. Show how to augment the DBN structure in
Figure 3(a), and explain any required changes to the CPTs.

c. Given the new network structure, can battery readings be used by the robot to infer the current

temperature?
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Figure 15.15 (a) A DBN (ragment showing the sensor status variable required for mod-
eling persistent failure of the battery sensor. (b) Upper curves: trajectories of the expected
vitlue of Battery, forthe *transient failure” and “pemmanent faillure™ observations sequences.
Lower curves: probability trajectones for BM Broken given the two observation sequences.

Figure 3: Exercise 14.9



