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Abstract—In this paper we consider the problem of equalizing
throughput of nodes in CSMA-based wireless networks. We
model interference in a network using conflict graph, where edges
represent hard-core interaction, meaning that the two nodes an
edge connects cannot be simultaneously active, or transmitting.
In practice, the degrees of nodes in a conflict graph are not
constant. In such cases, using CSMA leads to lack of fairness
since nodes with larger degree have the potential of getting hold
of the medium for smaller fraction of time than the nodes with
smaller degree. We present a distributed strategy for throughput
equalization. The proposed strategy is based on a mean-field
hard-core model of interference, and it equalizes the throughput
of the nodes with different degrees. We also show that the mean-
field hard-core model exhibits a certain phase transition. We
present results of Monte-Carlo simulations to evaluate the the
proposed strategy in square grid networks and Poisson networks,
in addition to mean-field networks.

I. INTRODUCTION

Carrier Sense Multiple Access with collision avoidance

(CSMA/CA) is a widely used medium access control (MAC)

protocol in wireless ad-hoc networks. In CSMA-based net-

works, nodes perform carrier sensing before initiating a trans-

mission, and continue on to transmit only if the medium is free.

Medium is considered to be free if carrier sensing returns a

value below some specified threshold. If the transmitter senses

the medium to be busy, it starts a backs-off timer. Upon the

expiration of the timer, it repeats the process starting with

carrier sensing once again. In practice, the method used for

setting back-off timers is somewhat more elaborate and can

be found in standard networking textbooks [1], [2]. Although

CSMA is somewhat old [3], there has been renewed interest

in the analysis of CSMA, primarily because of recent research

results, but also due to the development of new wireless

systems using CSMA, such as cognitive radio.

Various lines of approach exist for statistical modeling of the

blocking of nodes due to interference. Stochastic geometry [4]

offers one such approach where spatial point processes are

used to model the locations of wireless nodes [5], [6]. In

this context, Matérn hard-core point processes (HCPP) [7],

which are defined on the basis of Poisson point processes

(PPPs), have been studied extensively. Matérn type I process

is defined as follows. First a set of points in R
n are generated

using homogeneous PPP, followed by eliminating some of the

points in order to have no point within distance less than the

hard-core distance δ of any remaining point. Matérn type II

process is a dynamical version of Matérn type I process where

points in R
n are generated sequentially according to a PPP

while discarding all the points that fall within distance δ of the
points generated earlier. Thus, the occurrence of interference is

determined geometrically using the distance δ as “interference

range.” Some results on the analysis of interference using

HCPP exist in [8], [9], [10], [11], [12].

In this paper we take another approach, namely, that of

mean-field modeling as used in the context of statistical

mechanics of spin glasses applied to computational and in-

formation theoretic problems [13], [14]. In this context, by

mean-field models we mean models that do not consider the

geometrical structure, something that is present in models

defined on finite-dimensional spaces. These models can also

be referred as Gilbert’s random graph model G(n, p) [15]. We

shall, however, use the term mean-field to maintain the con-

vention adopted in the previous literature the results of which

we have used in this work. In scattering-rich environments

the distance between two nodes is no longer the determining

factor for the strength of interference between them. One may

argue that the complete disregard for the geometrical structure

in the mean-field modeling would be justifiable to some extent

in such environments. Moreover, simulation data presented

here suggest that the effectiveness of the equalization strategy

derived using this model carries over to geometric models.

In the following, we represent interference in a network by a

conflict graph where an edge represents hard-core interaction,

that is, the two nodes it connects cannot be simultaneously

active. In general the node degrees will vary. This leads to lack

of fairness in the sense that nodes with larger degree have the

potential of getting hold of the medium for smaller fraction

of time as compared to nodes with smaller degree. Lack of

fairness in a medium access protocol is generally considered

harmful since it can cause starvation and bottlenecks. We

present a distributed strategy for throughput equalization in

CSMA wireless networks, backed by a rigorous theory of

mean-field hard-core model of interference. The results of this

work are particularly applicable to large networks, e.g., large-

scale wireless sensor networks or highly dense networks [16].
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II. MODEL AND ANALYSIS

A. Mean-field hard-core models

In this section, we introduce a mean-field hard-core model

of interference. This is followed by the motivation, discussed

in Section II-B, for using belief propagation in this work.

Let G = (V,E) be a graph where V denotes the set of

nodes and E ⊂ V × V the set of edges. A hard-core model

on the graph G is defined by regarding G as a conflict graph:

Each element of V represents a wireless node whose state

can be either active or inactive. An edge implies that the two

nodes it connects have hard-core interaction so that they cannot

be simultaneously active. Let s = (s1, . . . , s|V |) ∈ {0, 1}|V |

be a vector representing the states of the nodes in G, with

si = 1 and 0 representing that node i is active and inactive,

respectively.

The hard-core model we study in this paper is defined in

terms of the probability distribution of the state vector s, as

p(s;µ) =
1

Z

∏

i∈V

eµisi
∏

(ij)∈E

(1− sisj), (1)

where µ = (µ1, . . . , µ|V |) ∈ R
|V | wherein µi controls the

average activity (defined below (2)) of node i, and Z is the

partition function. More precisely, the parameter µi defines the

average activity of node i with hard-core interactions absent

as eµi/(1+eµi). One can think of this quantity as the fraction

of time a node would remain busy transmitting if it was not

limited by interference. In the context of statistical mechanics,

the parameter µi corresponds to the chemical potential. In this

paper, we call the parameter µi the intensity of node i.
Properties of the hard-core model (1) depend on the un-

derlying graph G. In this paper we consider an ensemble of

random graphs, and a conflict graph is assumed to be sampled

from the random ensemble. A random ensemble is defined by

first specifying a degree distribution {λ(d)}d∈{0,1,...}. Then

for each d ∈ {0, 1, . . .}, nd ≈ |V |λ(d) nodes with degree

d are prepared by adding d stubs. A set of edges, where

|E| = (|V |/2)
∑

d dλ(d) is also prepared. An instance of the

random graph ensemble is generated by connecting the stubs

with randomly chosen edges such that each edge connects

exactly two different nodes. We call hard-core model defined

on such a random graph ensemble mean-field hard-core model.

As opposed to hard-core models defined on the basis of a

spatial point process [8], [9], [10], [11], [12], the mean-field

hard-core models completely ignore geometrical structure of

the space in which nodes are distributed.

It should be noted that in our modeling we have assumed

a saturated scenario, meaning that the queue of packets ready

for transmission is never empty in all nodes. One might be

able to consider the non-saturated scenario [17] in the mean-

field hard-core models, which however, is beyond the scope

of this paper.

B. Belief propagation and density evolution

Evaluating the mean activity of node i, defined as

ρi =
∑

s

si p(s;µ), (2)

is, in general, computationally hard. In fact, in the special case

where µ = 0, the partition function normalizing the proba-

bility distribution (1) is equal to the number of independent

sets in G, which is known to be #P-complete [18].In order

to circumvent the computational difficulty, we consider the

large-system limit, in which the number of nodes tends to

infinity while the degree distribution λ is kept fixed. In the

large-system limit a graph instance is asymptotically free of

cycles of finite length. It motivates us to approximate mean

activities by using belief propagation [19], where the results

are expected to become exact in the large-system limit.

Application of belief propagation to the hard-core model (1)

yields the following message update formula:

πi→j =
eµi

∏

k∈∂i\j(1− πk→i)

1 + eµi

∏

k∈∂i\j(1− πk→i)
, (i, j) ∈ E, (3)

where πi→j denotes the message propagated from node i to
node j, and where ∂i\j denotes the set of neighboring nodes

of node i in G excluding node j.
If the graph G is cycle-free, then the messages converge

after a finite number of message updates. The mean activity

ρi of node i is then evaluated with the converged messages as

ρi =
eµi

∏

j∈∂i(1− πj→i)

1 + eµi

∏

j∈∂i(1− πj→i)
. (4)

If the graphG has cycles, then there is in general no theoretical

guarantee for the exactness of the above evaluation, nor

even convergence of messages. Nonetheless, if the messages

converge, one can apply (4) to obtain an approximation of

mean activities.

In the large-system limit with a fixed degree distribution,

the equilibrium of belief propagation can be macroscopically

characterized via density evolution [20]. Since in the large-

system limit, the underlying graph is asymptotically free of

cycles of finite length, incoming messages {πk→i}k∈∂i\j can

be regarded as independent samples from a message distri-

bution P (π). At equilibrium, the message updating (3) does

not change the message distribution. This self-consistency

condition can be represented in terms of the density evolution

equation

P (π) = Eµ,d

[
∫

δ

(

π −
eµ
∏d−1

k=1(1− πk)

1 + eµ
∏d−1

k=1(1− πk)

)

×
d−1
∏

k=1

(P (πk) dπk)

]

, (5)

where Eµ,d denotes the average over the joint distribution of

intensity µ and degree d of nodes. The message distribution

P (π) is obtained as a solution of the density evolution

equation (5). The mean activity ρ(µ, d) of a node with intensity
µ and degree d is then estimated on the basis of the message

distribution P (π) as

ρ(µ, d) =

∫

eµ
∏d

k=1(1− πk)

1 + eµ
∏d

k=1(1 − πk)

d
∏

k=1

(P (πk) dπk). (6)
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Although in general one has to solve the density evolution

equation (5) numerically, one can obtain an analytic solution

in some special cases. A well known such case is where µ
and d are constant across the whole network. In this case one

has a solution of the form P (π) = δ(π− π̄), where π̄ satisfies

π̄ = eµ(1−π̄)d. The estimated mean activities are independent

of nodes, and are equal to

ρ =
π̄

1 + π̄
. (7)

III. THROUGHPUT EQUALIZATION

In this section, we consider the problem of throughput

equalization [21] in our mean-field hard-core model. The

objective is to adjust µ so as to equalize activities of the nodes.

Just as in the case where intensity and degree are constant,

as discussed in the previous section, we assume that by

appropriately choosing the degree-dependent intensities µ(d)
the message distribution P (π) becomes a delta function, that

is, P (π) = δ(π − π̄). In order to satisfy the assumption, one

has to define µ(d) so that the quantity

eµ(d)(1− π̄)d−1 (8)

is independent of the degree d. Letting a = eµ(d)(1 − π̄)d−1,

and on the basis of the assumption that the messages are all

equal to π̄, the belief propagation equation (3) can be written

as

π̄ =
a

1 + a
. (9)

The estimated mean activity ρ(d) of a node with degree d and

intensity µ(d), obtained via belief propagation as in (4), is

therefore given by

ρ(d) =
eµ(d)(1− π̄)d

1 + eµ(d)(1 − π̄)d
=

π̄

1 + π̄
, (10)

which is independent of the degree d, as expected. To the best

of the authors’ knowledge, this is a novel case where one can

obtain an analytic solution to the mean-field hard-core model

in the large-system limit.

Algorithm 1 Distributed throughput equalization strategy

Input: ρ̄ ✄ Target activity, 0 < ρ̄ < 1/2
Input: d ✄ Node degree, d > 0
1: µ(d) = log

(

(ρ̄(1− ρ̄)d−1)/(1− 2ρ̄)d
)

2: ρ0(d) = eµ(d)/(1 + eµ(d))
Output: Transmit with probability ρ0(d)

The above result leads to the throughput equalizing strategy

described below and summarized in Algorithm 1. We require

that mean activity of any node in the graph be equal to ρ̄,
that is, ρ̄ is the specified target activity. From (10), one has

π̄ = ρ̄/(1− ρ̄) and therefore

µ(d) = log
π̄

(1− π̄)d
= log

ρ̄(1− ρ̄)d−1

(1− 2ρ̄)d
. (11)

By fixing µ(d) in this way, equalization of the activities of the

nodes is achieved. Hence Theorem 1 follows.
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Fig. 1. ρ0(d) versus ρ̄.

Theorem 1 (Throughput equaliztion). Let the average ac-

tivity of a node (the intrinsic probability to use the chan-

nel in the absence of interference) of degree d be given

by ρ0(d) = eµ(d)/(1 + eµ(d)). Then equalization of per-

node throughput using CSMA is achieved in the mean-

field hard-core model of interference by setting µ(d) =
log
(

(ρ̄(1− ρ̄)d−1)/(1− 2ρ̄)d
)

, where 0 < ρ̄ < 1/2 denotes

the target equalized throughput.

An interesting point is that the above throughput-equalizing

strategy is local. The intensity of a node is determined by its

own degree and does not depend on the degree distribution. A

valid solution of (11) requires ρ̄ < 1/2 to hold. It should

be noted that this is not a limitation since in non-trivial

interference scenarios where degrees are greater than zero,

achievable ρ̄ cannot exceed 1/2.

The quantity

ρ0(d) =
eµ(d)

1 + eµ(d)
(12)

represents the activity of a degree-d node with intensity µ(d)
if the interference were absent. Figure 1 shows how ρ0(d)
behaves as a function of ρ̄. One can observe from this plot

that nodes with a large degree should have a large value of

ρ0(d) so as to compete against the large number of possible

interferes.

The assumption of uniform-message solution P (π) = δ(π−
π̄) is known to be invalid under certain conditions. A necessary

condition for the uniform-message solution to be valid is local

stability condition [22], which in our case corresponds to

the local stability of belief propagation around the uniform-

message solution πi→j = π̄. Linearization of message update

formula (3) around πi→j = π̄ is given in terms of a Jacobian

matrix that is equal to −π̄ times the nonbacktracking matrix

B of G [23], which is a 2|E| × 2|E| matrix with elements

defined as

Bi→j,k→l =

{

1, l = i, j 6= k
0, otherwise

. (13)

The local stability is therefore determined by the spectrum of

B, and for the random graph ensemble used in this work, the
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spectrum of B has been studied in [23]. Using their result, the

stability condition is given by

cπ̄2 < 1, (14)

where

c =

∑

d d
2λ(d)

∑

d dλ(d)
− 1. (15)

Hence Theorem 2 follows.

Theorem 2 (Stability of throughput equaliztion theorem). Let

π̄ = ρ̄/(1− ρ̄). Then the stability region of Theorem 1 is given

by cπ̄2 < 1 where c is given by (15).

For a constant-degree ensemble, we get c = d− 1 where d
is the degree, and the above local stability condition (14) is

reduced to that in [22].

IV. NUMERICAL EXPERIMENTS

A. Mean-field networks

Performing numerical experiments entailed generating in-

stances of large random graphs with prescribed degree distri-

butions. Some degree sequences, such as {3, 3, 1, 1}, cannot
be realized in a simple graph. The degree sequences that

are realizable in a simple graph are called graphical. Erdös-

Gallai theorem can be used to test whether a degree sequence

is graphical. Efficient linear time algorithms that use the

theorem to verify graphicality exist in the literature [24], [25].

We observed that, apart form having wrong parity, degree

sequences generated using uniform probability distribution for

large number of nodes were almost always graphical. In the

case of odd parity of the sequence, we simply select one of

the elements of the sequence, say di, that can be increased or

decreased without violating the degree distribution constraints

(e.g., allowable as well as the minimum and the maximum

degrees) and change the parity of di. Since the number of

nodes is large, doing so does not affect the overall degree

distribution. Once a graphical degree sequence of prescribed

degree distribution is found, graphs realizing the sequence can

be generated using methods proposed recently [26], [27]. For

our numerical experiments we used the algorithms of [24],

[26], as well as the code distributed by the authors of [27].

In the first set of numerical experiments a degree distribution

λ was first specified, and a random graph instance with the

specified degree distribution was generated. The intensities

µ were then determined via the analytical formula (11). We

performed Monte-Carlo updates of the states of the nodes by

randomly selecting a node and then stochastically updating

its state taking into account the hard-core interactions. After a

burn-in period, which was determined on the basis of temporal

changes of network-wide average activities, we computed

mean activities of the nodes in G. The total Monte-Carlo steps

were set to |V | × 106.
Figure 2 shows the results obtained for the case with |V | =

5 000 and a few degree distributions, plotting the average ρ(d)
as well as the variance of mean activities of nodes with degree

d versus the target activity ρ̄. We find that when the target
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Fig. 2. Average and standard deviation of mean activities of nodes with
degree d versus target activity ρ̄. (a) λ(3) = λ(4) = λ(5) = λ(6) = 0.25,
(b) λ(3) = 0.7, λ(4) = λ(5) = λ(6) = 0.1, and (c) λ(3) = λ(4) =
λ(5) = 0.1, λ(6) = 0.7. The vertical line shows the local stability threshold,
located at (a) ρ̄ = 0.3397, (b) 0.3704, and (c) 0.3182.
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activity ρ̄ is not too high the proposed throughput equalization

strategy works as expected. When the target activity ρ̄ does

not satisfy the local stability condition (14), on the other hand,

we observe the onset of a phase transition where the variance

in mean activities start to get very large, implying failure of

the proposed throughput equalization strategy.

Figure 3 shows the results obtained by varying |V | from 500

to 10 000, where the degree distribution was fixed to λ(3) =
λ(4) = λ(5) = λ(6) = 0.25. The plot shows the variance of

mean activities of nodes of degree 5 as a function of ρ̄. The
figure shows that the onset of the phase transition is indeed

independent of network size.

B. Grid networks

Wireless networks are better modeled as geometric graphs

where interference is localized. We next simulated networks

where nodes are placed on square grid and the interference

is limited to a node’s neighborhood. Node degrees were

assigned randomly as before. However, the conflict graphs

were constructed by attaching neighboring nodes in the or-

der of increasing distance until node degrees were satisfied.

The performance of our throughput equalization strategy on

a realization of such a graph is shown in Figure 4. The

strategy, though developed on the basis of mean-field model,

works well for a smaller, though comparable, range of ρ̄.
In Figure 4 as target activity, ρ̄, is increased, the average

equalized throughput for d = 6 starts to get smaller than the

rest somewhat before the critical point. However, the rate of

degradation remains small until phase transition occurs.

C. Poisson networks

Last we evaluated the proposed equalization strategy on

networks where node placements are distributed according to

spatial Poisson Point Process. This model has been used with
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Fig. 4. Average and variance of mean activities of nodes in square grid
networks with localized interference pattern.
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significant interest by wireless ad-hoc networks and cellular

networks research communities. We used the so-called disk

model of interference where an active transmitter is detected

during carrier sensing by nodes located within a specified

radius from the transmitter. Figures 6–7 show the results

of simulation where we deployed 500 Nodes in a field of

size 1000m × 1000m with interference range of 125m. The

network layout is shown in Figure 6, where the edges indicate

interference. The average and variance of mean activities of

nodes are shown in Figure 6. In the figure, we have plotted data

for those degrees where nd ≥ 10. In contrast with the previous
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Fig. 6. Network layout
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Fig. 7. Average and variance of mean activities of nodes in a network where
nodes are placed according to spatial PPP along-with localized interference
pattern.

evaluations, the range of degrees with non-trivial occupancy is

much bigger. The figure shows that the proposed equalization

strategy performs very well for low values of target activity ρ̄.
The average mean activity with hard-core interactions present

starts to diverge as the target activity activity approaches the

critical point. Till the critical point the variance too remains

close to zero. The range of ρ̄ where the average mean activity

remains stable well covers the low data rate networks, such

as, IEEE 802.15.4 networks. Furthermore, data rates higher

than this is not sustainable even when nodes continuously

try to access the medium (that is, back-off timer duration

approaching 0), as we show later in this section.

We compared the average activity of nodes using our

0
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0.03
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0.05

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ρ
(d
)

d

No Equalization
With Equalization

Fig. 8. Average mean activity. Parameter ρ̄ was 0.05 for equalized channel
access simulation and eµi = 0.05 ∀i for the case without equalization.

equalization strategy to that without it. Recall that in our

equalization strategy, we set the transmission probability of

node as a function of its degree, which is related to the

target activity through (11). Figure 8 shows the comparison

where we kept ρ̄ = 0.05 for the simulation where the

equalization strategy was in place and eµi = 0.05 ∀i where

we used CSMA without equalization. The network layout

and simulation setting for this and the following figure was

the same as stated earlier in this subsection. The simulation

data shows that the proposed equalization strategy consistently

gives higher mean activity, achieving 30–40% performance

improvement.

The performance of the proposed equalization strategy gets

better as we increase the target activity. We set ρ̄ (for the

equalized throughput simulation) as well as eµi (for the non-

equalized pure CSMA simulation) to 0.15. We also simulated

the non-equalized pure CSMA case where the nodes are

heavily contending to access medium by setting eµi to 0.90.

Figure 9 shows the comparison among all three scenarios.

First of all, the efficacy of our equalization strategy is clearly

visible. While the data for both scenarios without equalization

show systematic decline in average throughput with increase

in degree, such is not the case for the equalized channel

access strategy. Second, for comparable target activity, the

performance improvement given by the proposed equalization

strategy increases to 100–200%. Third and perhaps the most

interesting result is that for nodes having larger degrees (> 20
in this case) the average activity achieved by the proposed

equalization strategy while keeping channel access probability

low exceeds that of the case of non-equalized pure CSMA with

high level of channel contention.

V. DISCUSSION

Interference in networks of clusters of devices

Our analysis of the mean-field hard-core model can be

extended to the case where each node in a conflict graph
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corresponds not to a single wireless device but to a cluster

of m distinct and mutually interfering devices. We show that

analytical treatment of such an extension using the analytical

framework developed earlier is possible under some assump-

tions, and that doing so yields results that contain several

known results in the literature as special cases.

In the extended model mentioned above, at most one out

of m devices in each cluster can be active at any time

instance. Thus the state of a cluster is no longer a binary-

valued variable but instead takes a value in {0, e1, . . . , em},
where {e1, . . . , em} is the standard basis of an m-dimensional

space, with ei representing the state that device i in the cluster

is active (while the remaining (m − 1) devices are inactive).

Accordingly, one needs m parameters to parametrize each

message of belief propagation. If the clusters form a one-

dimensional chain, then the model includes the linear network

with 2m nearest-neighbor interactions discussed in [21], [28]

as a special case, where it has been analytically shown that

throughput equalization can be achieved by appropriately

setting the intensity of each node on the basis of its degree.

Their result can be reproduced within our framework since

a one-dimensional chain is cycle-free, and belief propagation

used in our work becomes exact when it is applied to trees,

which includes one-dimensional chain as a special case.

In our extension we instead assume that inter-cluster inter-

ference is such that for any clusters C,C′ ⊂ V connected

by an edge in the conflict graph, each device in cluster C
interferes with exactly k devices in cluster C′, and each device

in cluster C′ also does so exactly with k devices in cluster C,

where k ≤ m. So, k can be referred to as the number of inter-

cluster interfering devices per edge. Then in the large-system

limit, throughput equalization can be achieved by setting the

intensities of devices in cluster C according to

µC = log
π̄

(1 −mπ̄)(1− kπ̄)|∂C|−1
, (16)

where |∂C| is the degree of cluster C in the conflict graph,

π̄ ∈ [0, 1/m) is a parameter, and the target activity ρ̄ is given

by

ρ̄ =
π̄(1 − kπ̄)

1−mkπ̄2
. (17)

Since the right-hand side of the above equation is mono-

tonically non-decreasing in π̄ when π̄ ∈ [0, 1/m), one can

determine π̄ uniquely on the basis of the specified target

activity ρ̄. Noting that a device in cluster C has a within-cluster

degree of (m− 1) and an inter-cluster degree of |∂C|×k, the
above result shows that the intensity of a device in this setting

can be appropriately determined on the basis of its degrees,

irrespective of degrees of other devices, resulting in (once

again) a local strategy to achieve throughput equalization.

It should also be noted that by letting k = m, the above

equations are reduced to (11) and (10), respectively, implying

that the above result is indeed an extension of the analytical

result obtained in Section III. Furthermore, specializing the

above result to the case of a length-L linear network of clusters

with m = 2 and k = 1 reproduces the result in [21] on the

rectangular grid of size 2× L.

VI. CONCLUSION

In this paper we introduced a mean-field model for inter-

ference in CSMA-based wireless networks. We developed a

theory to address the problem of throughput equalization. We

considered large-system limit in order to overcome the com-

putational difficulty associated with computing the partition

function. Based on this theory, we presented a distributed

strategy for throughput equalization that uses local information

only. We presented several results of Monte-Carlo simulations

that confirm the effectiveness of the proposed strategy. We also

showed that the limitations of the proposed strategy arise due

to the onset of a certain phase transition. We discussed how the

results of this work can be extended to equalize throughput in

networks where nodes are clusters of devices in a decentralized

way.
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[24] Z. Király, “Recognizing graphic degree sequences and generating all
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