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Abstract—This paper addresses modeling and analysis of
interference in wireless networks. We present a novel clustered
mean-field hard-core model with non-homogeneous clusters. We
develop a theory for throughput equalization in this model which
can serve as a distributed strategy for throughput equalization.
We also present stability analysis of the throughput equalization
strategy. This work recovers several previously known results as
special cases. We present results of Monte-Carlo simulations to
evaluate the proposed strategy in mean-field networks.

Index Terms—Wireless interference, Belief propagation, Mean-
field method

I. INTRODUCTION

In this paper, we present a clustered mean-field hard-
core model with non-homogeneous clusters, and develop a
theory for throughput equalization in this model. This work is
motivated by modeling and analysis of interference in wireless
networks. Models based on Matérn hard-core point process [1]
have been shown to be good models for Carrier Sense Multiple
Access with collision avoidance (CSMA/CA) [2], [3]. In
networks using time division multiplexing, frequency division
multiplexing and CSMA/CA, a node in transmitting state
forbids a set of other nodes to be in the same state. We
consider a hard-core model of interference suited to model this
behavior. The model studied in this paper can be interpreted as
a special case of the more general loss networks [4], [5]. The
belief propagation equations (8) can be regarded as a special
form of the Erlang fixed point equations for the loss networks,
which are known to give approximate mean activities, and in
some limiting regimes asymptotically exact ones.

We studied a collection of interfering nodes in [6]. In this
paper, we generalize the model and consider a collection of
clusters interfering with each other where each cluster consists
of m nodes. A “cluster with m nodes” may correspond to a
collection of physical devices where each device may use one
of m frequency bands. We then assume that if one device uses
a frequency band, the other devices in the same cluster cannot
use any of the m bands. This “within-cluster interference”
is cross-band interference, possibly caused by insufficient
attenuation of a signal emitted from a nearby device. The
“inter-cluster interference” may be the interference within the
same band, that between neighboring bands, or in some other
form. In addition to a model for wireless networks of device

clusters, “cluster with m nodes” may alternatively correspond
to a single physical device that can use any one of the m
frequency bands. As this device is allowed to use only one of
the m bands, the “within-cluster interference” is such that at
most one band is allowed to be active at any given time.

In this paper, we develop a mean field model for interference
in a network of clusters of nodes where the inter-cluster
interference is modeled by non-geometric conflict graph. In
general the cluster degree will vary from cluster to cluster.
This leads to lack of fairness in the sense that nodes in
clusters with larger degree have the potential of getting hold
of the medium for smaller fraction of time as compared to
nodes in clusters with smaller degree. This lack of fairness
is generally considered harmful since it can cause starvation
and bottlenecks. The results of this work serve as a distributed
strategy for throughput equalization in the clusters. The condi-
tions under which the throughput equalization remains stable
are also presented here. In addition to practical applications,
this work recovers several previously known results. As noted
above, this work generalizes the results of [6] which was
obtained for interference in networks of single nodes where
conflict graph edges represented hard-core interaction between
a pair of nodes. It should be noted that the mean-field model
discussed in [6] was also studied with the different objective of
utility maximization in [7]. Constraining the clusters to form a
one-dimensional chain, this model includes the linear network
with 2m nearest-neighbor interactions discussed in [8], [9],
[10] as a special case, where it has been analytically shown
that throughput equalization can be achieved by appropriately
setting the intensity of each node on the basis of its degree.
The network with 2 × L rectangular grid topology discussed
in [8] can also be regarded as another special case of our
framework, by regarding the 2×L rectangular grid as a one-
dimensional chain of L size-2 clusters. The work presented in
this paper differs from the above mentioned references in that
the cluster of networks model presented in this paper is general
and encompasses the other work as special cases. Further, the
stability analysis in network of clusters of this paper is new.
Stability is not considered in [8], [9], [10]. A study of the
application of belief propagation for computing throughput in
CSMA networks is presented in [11]. In the above mentioned
work, the update messages are set-up and evaluated experi-
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mentally. Our present work focuses on throughput equalization
and provides closed form expressions. An analysis of average
activity in CSMA networks is presented in [12]. This work
introduced a mean-field hard-core model of interference and
analyzed d-regular graphs. The present work generalizes the
model to non-homogeneous clusters.

On the basis of the analogy with the asymptotic exactness
of belief propagation decoder of low-density parity-check
(LDPC) codes in the limit of infinite codelength [13], belief
propagation applied to the mean-field hard-core model gives
asymptotically the exact mean activities in the large-system
limit. Primarily from the perspective of the relation of the
analysis presented here to that of loss networks, the main
contributions of this paper are:

1) Derivation of an explicit throughput-equalizing strategy
which is local in the sense that the intensity of a node is
to be determined only on the basis of the degree of the
cluster to which the node belongs and the target mean
activity.

2) Proving that there is a threshold in the target mean
activity, above which the throughput equalization fails,
and that the threshold is given by studying the local
stability of belief propagation. The failure of throughput
equalization also implies that the Erlang fixed point
equations also fail to give good approximations to the
mean activities in such cases.

The asymptotic exactness of belief propagation, the efficiency
of the proposed throughput-equalizing strategy, as well as the
non-trivial correspondence between the failure of the through-
put equalization and the local stability of belief propagation
are confirmed using numerical experiments.

II. SYSTEM MODEL

We consider a collection of clusters of nodes interfering
with each other. The within-cluster interference is such that
only one node in any cluster can be active simultaneously.
The inter-cluster interference is represented by a cluster-level
conflict graph, in which clusters are connected by inter-
cluster edges, where an inter-cluster edge represents existence
of interference between the clusters connected by it. The
inter-cluster interference between nodes is expressed as an
adjacency matrix of the bipartite conflict graph between nodes
in one cluster and those in the other. Given inter-cluster
edge CC ′, the existence/absence of inter-cluster interference
between nodes in C and those in C ′ is represented by a
node-level bipartite conflict graph, whose adjacency matrix
is denoted by KCC′ . A node in C and another node in C ′

cannot be active simultaneously if they have an inter-node
edge between them in the node-level conflict graph defined
by KCC′ . The objective is then to adjust the activation rates
of nodes in order to achieve equalization, that is, to have the
same average activity across all the nodes.

In this paper, we make the following assumptions which
allow us to derive an explicit solution achieving equalization
exactly for cycle-free graphs, as well as, asymptotically for
random graphs in the large-system limit, that is, the limit of

the number of clusters tending towards infinity. Let {Ca : a =
1, . . . , A} be a partition of C, and {C ′

a : a = 1, . . . , A′}
be a partition of C ′. Let KCaC′

a′
be the submatrix of KCC′

corresponding to the subsets Ca and C ′
a′ , that is, KCaC′

a′
is the adjacency matrix of the subgraph with the sets of
nodes Ca ∪ C ′

a′ . We assume that all the clusters have the
same number m of nodes. Each cluster C admits partitions
{Ca : a = 1, . . . , A} satisfying the following conditions:

• The number A of the partitions is the same for all the
clusters.

• The number of nodes in the A partitions are the same
across all the clusters, that is, |Ca| = sa for any cluster
C and any a ∈ {1, . . . , A}, whereas |Ca| and |Cb| for
a ̸= b can be different from each other.

• The subgraph defined by KCaC′
a′

is bi-regular. Recall that
a bipartite graph (V ∪V ′, E) is bi-regular if any two nodes
in V have the same degree and so do any two nodes in
V ′. The degree of a node in V and that of a node in V ′

need not be the same. All the rows of KCaC′
a′

have the
same sum, and all the columns of KCaC′

a′
have the same

sum. Furthermore, the row sum daa′ is shared by all the
inter-cluster edges.
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Fig. 1: Conflict graph at cluster level. Partitions are shown in
dashed ovals. Interference between different partitions are also
shown.

1 2

3

4

1 2

3

4

1 2

3

4

C C ′ C ′′

Fig. 2: Conflict graph at node level

An example of clusters satisfying the above conditions is
illustrated in Figures 1 and 2. The clusters have two partitions:
C1 = {1, 2, 3} and C2 = {4}. As KCaC′

a′
is of size sa × sa′

and bi-regular, one has sa ≥ da′a, sa′ ≥ daa′ , and sadaa′ =
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sa′da′a for any a, a′. Let s = (sa) and D = (daa′). In the
above example, one has

s =

(
3
1

)
, D =

(
1 1
3 1

)
. (1)

Note that a node i ∈ Ca has degree
∑A

a′=1 daa′ = (D1)a.

III. BELIEF PROPAGATION

Let ΨC ∈ {0, e1, . . . , em} denote the state of cluster C,
where {e1, . . . , em} is the standard basis of an m-dimensional
space, with ei representing the state that node i in the cluster
is active while the remaining (m − 1) nodes are inactive.
Similarly, let ΨCa

∈ {0, e′1, . . . , e′sa} denote the state of
a partition, where e′i is an sa-dimension vector whose ith

element is 1 and all other elements are 0. The mean activity
of a partition Ca is

ρCa =
∑

ΨCa ̸=0

P (ΨCa ;µC,a), (2)

where P is the probability distribution of the state vector and
µC,a is the activation rate controlling the average activity of
nodes in partition Ca. The parameter µ is analogous to the
chemical potential used in statistical mechanics.

We use the factor graph representation [14] of the conflict
graph to apply belief propagation [15]. A factor graph is
a bipartite graph containing |V | variable nodes, each corre-
sponding to a cluster partition, and |E| factor nodes, each
corresponding to a hard-core constraint. An edge in the factor
graph connects a variable node and a factor node representing
a hard-core constraint on the variable node. More concretely,
we model the joint distribution of the cluster states Ψ = (ΨC)
as

P (Ψ;µ) ∝
∏
C∈V

P0(ΨC ;µC)
∏

CC′∈E

Φ(ΨC ,ΨC′ ;KCC′),

(3)
where

P0(ΨC ;µC) ∝ e
∑m

i=1 δΨC,ei
µC,i , (4)

Kronecker’s delta δ·,·, governs the probabilistic activity of
cluster C if there were no inter-cluster interference, and

Φ(ΨC ,ΨC′ ;KCC′) = 1−Ψ⊤
CKCC′ΨC′ (5)

represents the inter-cluster interference between clusters C
and C ′. The factor model we consider consists of variable
nodes, each of which corresponds to the state variable ΨC of
a cluster, and factor nodes, each of which corresponds to an
inter-cluster constraint.

Our goals are to evaluate the mean activities {ρCa
} given

the activation rates µ under the probability model (3), and
furthermore, to determine µ to achieve equalization. Our
starting point is the observation that belief propagation is
applicable to deal with the former problem, in which one
considers, for each edge Ca–(CaC

′
a′) connecting variable node

Ca ∈ V and factor node (CaC
′
a′) ∈ E in the factor graph, two

messages πCa→(CaC′
a′ )

and π(CaC′
a′ )→Ca

, the former being
from variable node Ca to factor node (CaC

′
a′), and the other

from factor node (CaC
′
a′) to variable node Ca. Each node

collects messages from adjacent nodes in the factor graph,
and calculates messages to be sent to the adjacent nodes.
Since each factor node is of degree 2, which reflects the
fact that each hard-core constraint is on two variables, the
message π(CaC′

a′ )→Ca
from factor node (CaC

′
a′) to variable

node Ca is the same as the message πC′
a′→(CaC′

a′ )
to the factor

node (CaC
′
a′) from the other variable node C ′

a′ connected to
the factor node. One can then define the message πCa→C′

a′

for edge (CaC
′
a′) in the conflict graph as being equal to

πCa→(CaC′
a′ )

and π(CaC′
a′ )→C′

a′
. Since the messages πCa→C′

a′
can be regarded as probability distributions of ΨCa , the state
vector of partition Ca, these messages are simply parameter-
ized by their respective expectations. With a slight abuse of
notation, we let πCa→C′

a′
∈ [0, 1]sa denote the expectation of

the message from node Ca to node C ′
a′ in G, and call such

parameters the messages.
Consider clusters C and C ′ that are connected by an inter-

cluster edge in the conflict graph. Let (CaC
′
a′) denote the

factor node representing the interaction between the partitions
Ca and C ′

a′ . Application of belief propagation to throughput
equalization in the hard-core model gives the message update
formula (3), where µC,a,i is the intensity of device i ∈ Ca

and ∂Ca\C ′
a′ denotes the set of neighbors of Ca excluding

C ′
a′ .
The mean activity of device i ∈ Ca is evaluated using

converged messages as

ρi =

eµC,a,i
∏

C′
a′∈∂Ca

(
1−(KCaC′

a′
πC′

a′→Ca
)i

)
1+

∑A
j=1

∑sj

i′=1
e
µ
C,j,i′

∏
C′
a′∈∂Cj

(
1−(KCjC

′
a′

πC′
a′→Cj

)i′

) .

(7)

IV. THROUGHPUT EQUALIZATION

Suppose that there exists an equilibrium message π̄ = (π̄a),
meaning that the outgoing message from node i ∈ Ca at
equilibrium is π̄a for each cluster C. For C,C ′ and i ∈ Ca,
one has (KCC′π̄)i =

∑A
a′=1 daa′π̄a′ = (Dπ̄)a, and the belief

propagation equation at equilibrium reads

π̄a =
eµC,a(1− (Dπ̄)a)

|∂C|−1

1 +
∑A

a′=1 sa′eµC,a′ (1− (Dπ̄)a′)|∂C|−1
. (8)

Using the equilibrium messages π̄, the mean activity ρa of
nodes in Ca is given by

ρa =
eµC,a(1− (Dπ̄)a)

|∂C|

1 +
∑A

a′=1 sa′eµC,a′ (1− (Dπ̄)a′)|∂C|
. (9)

Although the above expression for the mean activities may
not be correct if the graph has cycles, it becomes exact
asymptotically for random conflict graphs in the large-system
limit. In the following, we assume either a cycle-free graph or
the large-system limit of such random conflict graphs.

The expression (8) shows that if one can choose µC,a

depending on the degree of C so that eµC,a(1−(Dπ̄)a)
|∂C|−1

becomes independent of C, then π̄ becomes an equilibrium
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πCa→C′
a′ ,i =

eµC,a,i
∏

C
′′

a
′′ ∈∂Ca\C′

a′

(
1− (KCaC

′′

a
′′
πC

′′

a
′′→Ca

)i

)
1 +

∑A
j=1

∑sj
i′=1 e

µC,j,i′
∏

C
′′

a
′′ ∈∂Cj\C′

a′

(
1− (KCaC

′′

a
′′
πC

′′

a
′′ →Ca

)i′

) , i = 1, . . . , sa (3)

message vector, that is, the outgoing message vector of a
cluster is π̄ when all the incoming message vectors to the
cluster are π̄, and this holds for every cluster. In other words,
the inter-cluster equalization is achieved asymptotically.

Assuming that one chooses such µC,a’s, and letting p =
(pa) with pa = eµC,a(1− (Dπ̄)a)

|∂C|−1, one has

π̄a =
pa

1 +
∑A

a′=1 sa′pa′
=

pa
1 + sTp

, (10)

which is summarized in a vector form as

π̄ =
p

1 + sTp
. (11)

We can solve it with respect to p as

π̄ = (I − π̄sT )p, (12)

p = (I − π̄sT )−1π̄

=

(
I +

π̄sT

1− sT π̄

)
π̄

=

(
1 +

sT π̄

1− sT π̄

)
π̄

=
π̄

1− sT π̄
, (13)

where we have used the identity

(I − abT )−1 =

(
I +

abT

1− bTa

)
. (14)

Letting qa = (1− (Dπ̄)a)pa, one has

ρa =
(1− (Dπ̄)a)pa

1 +
∑A

a′=1 sa′pa′(1− (Dπ̄)a′)

=
qa

1 +
∑A

a′=1 sa′qa′
. (15)

Within-cluster equalization will be achieved if one can let qa
be independent of a, which in turn makes ρa independent
of a. As we have already achieved inter-cluster equalization,
letting qa be independent of a allows us to achieve perfect
equalization. Assume qa = q. One then has

q1 = (I − diag(Dπ̄))p

=

(
I − 1

1 + sTp
diag(Dp)

)
p,

q(1 + sTp)1 =
(
(1 + sTp)I − diag(Dp)

)
p (16)

The tunable parameters are {µC,a}. If one can find p satisfying
the above condition, then one can calculate π̄ via (11), and
finally one may be able to specify µC,a via pa = eµa(1 −
(Dπ̄)a)

|∂C|−1 according to π̄ and the degree |∂C| of the
cluster C. This establishes the following theorem:

Theorem 1 (Throughput equalization in inhomogeneous
clusters): In a network of inhomogeneous clusters, the per-
node throughput in a cluster C is equalized if the intensity
µC,a of nodes in its partitions a ∈ {1, . . . , A} are chosen
according to pa = eµC,a(1 − (Dπ̄)a)

|∂C|−1 where p = (pa)
satisfies (16) for a given equalization target q.

The iteration

p(t+1)
a :=

q

1− (Dp(t))a
1+sTp(t)

(17)

starting from the initialization p(0) = 0 can be used for
numerically finding the solution p for a given value of q.

Convergence proof of (17): Simplifying (17) gives

p(t+1)
a :=

q(1 + sTp(t))

1 +
∑A

a′=1(sa′ − daa′)p
(t)
a′

. (18)

Since sa′ ≥ daa′ for all a, a′, and p
(t)
a ≥ 0,

p(t+1)
a ≤ q(1 + sTp(t)). (19)

Let α = argmaxa
∑A

a′=1 daa′ and define

p̃(t+1)
α := q(1 +mp̃(t)α ), (20)

where p̃
(0)
α = 0. Clearly, p̃

(t+1)
α ≥ p

(t+1)
a , ∀t ≥ 0 and for

all a = 1, . . . , A. We now show that p̃(t)α converges if qm <
1, thereby establishing the iteration (17) being non-diverging.
The iteration (20) is solved as

p̃(t)α = q
1− (qm)t

1− qm
, (21)

which converges if qm < 1. ■
Special cases (homogeneous clusters): Assume that

D1 = k1, that is, row sums of KCC′ are all equal to k.
We seek an equalized solution under this assumption. Suppose
π̄ = π̄1 and p = p1. Then one has Dπ̄ = kπ̄1, π̄ = p

1+mp ,
and p = π̄

1−mπ̄ . Choosing µa to satisfy

µa = log
p

(1− kπ̄)|∂C|−1
= log

π̄

(1−mπ̄)(1− kπ̄)|∂C|−1

(22)
one has

ρ =
q

1 +mq
(23)

with q = (1 − kπ̄)p = π̄(1−kπ̄)
1−mπ̄ , achieving throughput

equalization. This implies

ρ =
q

1 +mq
=

π̄(1−kπ̄)
1−mπ̄

1 +m π̄(1−kπ̄)
1−mπ̄

=
π̄(1− kπ̄)

1−mπ̄ +mπ̄(1− kπ̄)
=

π̄(1− kπ̄)

1−mkπ̄2
, (24)
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reproducing the result of [16].
By letting k = m = 1, the above equations recover the

results of [6].
Further, constraining the clusters to form a one-dimensional

chain, the homogeneous cluster case includes the linear net-
work with 2m nearest-neighbor interactions discussed in [8],
[9], [10] as a special case. Their result can be reproduced
within this paper’s framework since a one-dimensional chain
with 2m nearest-neighbor interaction can be regarded as a
one-dimensional chain of size-m clusters, which is cycle-free.
Belief propagation used in our work becomes exact when it
is applied to trees, which includes one-dimensional chain as
a special case. Specializing the above result to the case of a
length-L linear network of clusters with m = 2 and k = 1
reproduces the result in [8] on the rectangular grid of size
2× L.

It should be noted that our model also includes as a special
case the multi-channel linear networks [17] with 2 nearest-
neighbor interactions, by letting KCC′ = I for all C,C ′

connected by an inter-cluster edge, which yields k = 1.
Although the authors of [17] mentioned that no simple formula
achieving equalization would seem to exist except under heavy
traffic, our result successfully demonstrates that such a formula
does exist in some cases.

V. LOCAL STABILITY ANALYSIS

We study local stability of the equalizing solution π̄ via
considering small perturbations of the messages around the
equalizing solution.

Theorem 2 (Stability of throughput equalization): The
throughput equalization strategy given by Theorem 1 is stable

if
(

ξBνK
q(1+sTp)

)2

< 1 where ξB is the largest eigenvalue of the
nonbacktracking matrix, B, of the conflict graph and νK is the
largest eigenvalue of K given by (31).

Proof: We first consider how a perturbation of an incom-
ing message to a cluster affects an outgoing message from the
cluster. We specifically assume that all the incoming messages
to cluster C are the equalizing message π̄ except the one from
cluster C ′ that is adjacent to C, which is assumed to have
element j perturbed as

πC′→(C′C) = π̄ + δC′C,jej . (25)

This perturbation of the incoming message from cluster C ′

causes perturbation of the outgoing message to cluster B ̸= C ′

as

δCB,i =[
−(KCC′)ij

eµC,i
∏

D′∈∂C\B,C′(1− (KCD′π̄)i)

1 +
∑mC

i′=1 e
µC,i′

∏
D′∈∂C\B(1− (KCD′π̄)i′)

+ π̄i

∑mC

i′=1 e
µC,i′ (KCC′)i′j

∏
D′∈∂C\B,C′(1− (KCD′π̄)i′)

1 +
∑mC

i′=1 e
µC,i′

∏
D′∈∂C\B(1− (KCD′π̄)i′)

]
× δC′C,j . (26)

It should be noted that when i ∈ Ca one has KCD′π̄ =
Dπ̄, which is independent of D′. Also note that when j ∈

C ′
b,
∑

i′∈Ca
(KCC′)i′j is equal to the column sum of KCaC′

b
,

which is further equal to the row sum of KC′
bCa

, which is dba.
Using these, the above expression is reduced to

δCB,i =[
−(KCC′)ij

eµC,a(1− (Dπ̄)a)
|∂C|−2

1 +
∑A

a′=1 sa′eµC,a′ (1− (Dπ̄)a′)|∂C|−1

+π̄a

∑A
a′=1 e

µC,a′dba′(1− (Dπ̄)a′)|∂C|−2

1 +
∑A

a′=1 sa′eµC,a′ (1− (Dπ̄)a′)|∂C|−1

]
δC′C,j

=

[
−(KCC′)ij

ra
1 + sTp

+ π̄a

∑A
a′=1 dba′ra′

1 + sTp

]
δC′C,j ,

(27)

where we have let

ra = eµc,a(1− (Dπ̄)a)
|∂C|−2 =

pa
1− (Dπ̄)a

=
q

(1− (Dπ̄)a)2
=

p2a
q
. (28)

Let z = (za) with za = p2a. One then has

δCB,i =
1

q(1 + sTp)

[
π̄a(D

Tz)b−(KCC′)ijza

]
δC′C,j . (29)

The coefficient of δC′C,j on the right-hand side gives the
corresponding element of the Jacobian J associated with the
message-updating formulas at the equalizing solution.

If we further assume that KCC′ = K for every edge CC ′

in the graph, then the Jacobian J is represented as

J =
1

q(1 + sTp)
B ⊗ K, (30)

where B is what is called the nonbacktracking matrix of the
graph [18] and

K = (kij), kij = π̄a(D
Tz)b −Kijza, i ∈ Ca, j ∈ Cb.

(31)
Let νK and ξB be the maximal eigenvalues of K and B,
respectively. Then the stability condition is given by [18]:(

ξBνK
q(1 + sTp)

)2

< 1. (32)

We may instead assume that KCC′ are chosen randomly
among those satisfying the degree constraints specified by the
matrix D, in which case the local stability analysis would be
much more complicated than that in the case with KCC′ = K.
The local stability condition should depend on the details of
the assumptions on KCC′ .

Special case: Assume that K = 11T , that is, K is the
complete bipartite graph, and that the graph is a sample from a
random ensemble of large sparse graphs specified by a degree
distribution λ(d). One then has

ξB =
√
c, (33)

where

c =

∑
d d

2λ(d)∑
d dλ(d)

− 1. (34)
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One also has

π̄ =
p

1 +mp
, p =

π̄

1−mπ̄
, q = (1−mπ̄)p = π̄,

q(1 + sTp) = π̄(1 +mp) = p, (35)

so that K is given by

K = (mπ̄ − 1)p211T = −π̄p11T , (36)

yielding νK = −mπ̄p. Collecting these results, the stability
condition for this special case reduces to cm2π̄2 < 1, which
reproduces the stability condition given as equation (17)
in [16].

VI. NUMERICAL RESULTS

A. Non-homogeneous clusters

We now present numerical results that evaluate the perfor-
mance of the throughput equalization method. The interference
scenario in the simulations are based on the examples dis-
cussed in Section II. Node i in a cluster interferes with node
i in adjacent clusters and also nodes i− 1 and i+ 1 in those
clusters whenever such nodes exist. Clusters are connected by
an edge with probability p. Further, clusters are ensured to
be connected. The partition sizes are kept 2 if the number of
nodes in clusters is even. Otherwise, the sizes of all but one
partition is kept 2 and one of the partitions consists of one
node. We present data for the odd m case below. The results
for even m were similar and hence omitted. We simulated
two scenarios where network consisted of 10 and 30 clusters,
respectively.

Using q as the independent variable, we first calculated π̄
using (11) and then µC,a was obtained as pa = eµa(1 −
(Dπ̄)a)

|∂C|−1. We randomly selected a node and performed
Monte-Carlo updates of its state taking into account the hard-
core interactions. After a burn-in period we computed the
activities of the nodes in the network. The total Monte-Carlo
steps for each q were set to 106.

Figures 3 and 4 show the performance of throughput equal-
ization for networks where average cluster degrees were 3.6
and 8.1 for the network of 10 clusters and 3.9 and 9.9 for
the network of 30 clusters, respectively. Each of the two cases
represent networks with 10 and 30 clusters where each cluster
had four partitions of sizes 2, 2, 2 and 1. In addition to the
average node activity for all the nodes, the figures also show
the average node activity in three randomly chosen clusters.
The range of values of q for which the stability condition (32)
is satisfied is shown by a horizontal line on the bottom of each
of the plots.

Average node activity is shown on the vertical axis. Since
each cluster has 7 nodes, the maximum average cluster activity
achieved within the stability region for Figure 3 is between
0.4 and 0.5. Some non-negligible variance in average activity
within the stability region was due to small system size and
low cluster degree. In networks with larger cluster degrees,
there was very good agreement between theory and simulation
results as shown in Figure 4. We see that the variance starts
to rise beyond the stability region.

(a) 10 clusters.

(b) 30 clusters.

Fig. 3: Average cluster degree ≈ 4.

B. Homogeneous clusters

The closed-form expressions for homogeneous clusters al-
low simulations and evaluation of the theoretical results on
large networks. Here we simulated networks of 1000 clusters.
We first generated inter-cluster conflict graph. We used the
approach taken in [6] to compute a graphical degree sequence
of prescribed degree distribution. Subsequently, we used the
algorithms of [19], [20] to generate graphs that conform to the
graphical degree sequence obtained earlier. Then we connected
each node in one cluster to k nodes in each of the adjacent
clusters in the conflict graph. We do so systematically by
connecting a node, i, to nodes i, . . . , (i+ k − 1)%m.

We performed Monte-Carlo updates of the states of the
clusters as in the simulations of non-homogeneous clusters.
In a typical Monte-Carlo step, if a cluster has none of its
nodes active, it is decided to be turned on with probability
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(a) 10 clusters.

(b) 30 clusters.

Fig. 4: Average cluster degree ≈ 9.

eµa/(1 + eµa) (22). If a cluster is decided to be turned on,
we search for a non-blocked node in the cluster and turn it
on. If several nodes can be turned on, we make a list of all
such nodes and randomly select one node among the list to be
turned on. Note that it is possible for two clusters connected
by a conflict edge to be simultaneously active (Fig. 5).

Results of simulation of m = 6 cluster models with varying
k are shown in Figs. 6a–6b. The cluster degree distribution is
uniform over the degrees from 3 to 6. Each figure represents
a network of 1000 clusters and each data point represents a
result obtained from about 109 MC steps. The target node
activity ρ̄ is the independent variable and the average cluster
activity is shown on the Y -axis. The dashed line represent
ideal equalized node throughput. Similarly to the case of non-
homogeneous clusters, the range of the target ρ̄ values over

Fig. 5: Two neighboring clusters can be simultaneously active
as shown in this model with m = 3, k = 2.

(a) m = 4, k = 2.

(b) m = 6, k = 4.

Fig. 6: Throughput equalization performance. 1000 clusters.
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Fig. 7: Throughput equalization in a tree. m = 4, k = 2.

which the equalization strategy is predicted to be stable is
shown by the horizontal line. We observe that the equalization
strategy is effective even though the simulated graphs had
cycles. As the target ρ̄ approaches the stability threshold, the
clusters whose inter-cluster degree is larger than the average
start to get lower throughput than the average. ”Cluster 3” in
Fig. 6a and ”Cluster 2” in Fig. 6b are such examples.

Figure 7 shows the simulation result where the cluster
conflict graph was a tree. There were 1000 clusters where
we first generated the conflict graph as described above and
then removed edges from loops until the graph was a tree. The
result was that 422 clusters had degree 1, 289 had degree 2,
186 had degree 3, 73 had degree 4 and 30 had degree 5.

VII. CONCLUSION

In this paper we introduced a clustered mean-field hard-core
model for non-homogeneous clusters. We developed a theory
for throughput equalization and stability analysis. Based on
this theory, we obtained local methods to equalize throughput
and derived conditions for its stability. The work presented
here is a generalization of previously reported results in the
literature. The results for homogeneous clusters were shown
to be a special case. We presented results of Monte-Carlo
simulations for non-homogeneous and homogeneous clusters
that confirm the effectiveness of the proposed strategy as well
as the presence of instability.
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