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Abstract—In this paper we present a mean-field hard-
core model of interference in wireless networks using
CSMA. We consider d-regular random graph ensembles
in which the edges are drawn randomly and an edge in a
graph represents hard-core interaction such that the two
nodes connected by the edge cannot be simultaneously
active, or transmitting. We present an analysis of average
activity in the presence of hard-core interactions in
conflict graphs sampled from regular random graph
ensembles. We also present experimental data obtained
using Monte-Carlo simulations. A surprising conclusion
of experimental results is that the average activity is not
always monotonic in d.

I. INTRODUCTION

Modeling and analysis of ad-hoc networks have

drawn significant attention of researchers from net-

working as well as information theory. Interference

is the quintessential issue in modeling and analysis

of wireless networks. Interference limits capacity and

leads to performance penalties, such as throughput

loss, increased delay and energy wastage. Medium

access control (MAC) protocols limit, or even elim-

inate, collisions by determining the subset of nodes

that can be transmitting simultaneously. The MAC

protocols used in ad-hoc networks are distributed.

Carrier Sense Multiple Access (CSMA) is such a

MAC protocol that is very commonly used. Prior

to initiating a transmission, a node performs carrier

sensing in CSMA. A transmission is started only if

the medium is free. In practice, medium is deemed

to be free if carrier sensing returns a value below

some specified threshold. If the medium is found to

be busy, the transmitting node backs-off and performs

carrier sensing again but after elapse of certain time.

Although CSMA is somewhat old [1], there has been

renewed interest in the analysis of CSMA, primarily

because of recent research results as well as develop-

ment of new wireless systems using CSMA, such as

cognitive radio.
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Statistical modeling of blocking caused by interfer-

ence can be done in several different ways. One ap-

proach consists of using stochastic geometry [2] where

locations of wireless nodes are represented in terms

of a spatial point process [3], [4]. Matérn hard-core

point processes (HCPP) [5] are point-process models

that have extensively been studied. They are defined

on the basis of Poisson point processes (PPPs). Matérn

type I process is defined by first generating a set of

points in R
n using a PPP with a spatially-uniform

intensity, and then by eliminating all the points that

have other points with distance less than the hard-core

distance δ. Matérn type II process can be regarded as

a dynamical variant of Matérn type I process. It is

defined by generating points in R
n according to a PPP

sequentially, and eliminating all the points that have

other points generated earlier with distance less than

the hard-core distance δ. A key assumption behind the

modeling of interference with HCPP is that occurrence

of interference is determined geometrically: two nodes

interfere if the distance between them is less than δ,
and they do not if the distance is more than δ. Some

results on analysis of interference using HCPP can be

found in [6], [7], [8], [9], [10].

Another approach, which we pursue here, is the

mean-field modeling. The conventional notion of the

mean-field method, as described in statistical-physics

textbooks such as [11], is that the thermodynamics of

the state of an entity, e.g., energy of an individual

atom, is determined using long-range order param-

eter, e.g., the average energy of the system while

ignoring local fluctuations. Instead, we use this term

in the context of the framework of statistical me-

chanics of disordered systems (“spin glasses”) applied

to informatics problems [12], [13], where mean-field

models are characterized as models which lack any

geometrical structure that would otherwise be present

in models defined on finite-dimensional spaces, and

which, thanks to the lack of geometrical structure,

admit exact expressions for macroscopic quantities in

the large-system limit.

In our mean-field approach to analyzing ad-hoc net-

works, one therefore completely ignores geometrical

aspects. One can argue that ignoring geometrical as-
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pects is justifiable to a certain extent under scattering-

rich environments, where the distance is not an ap-

propriate measure for interference strength. Further,

our simulation shows that the results obtained by the

mean-field approach are very good approximation of

the case when one takes the spatial geometry into

account. In our mean-field modeling, we consider a

random graph ensemble in which a graph instance

consists of many nodes and randomly drawn edges

among them. An edge in a graph represents hard-core

interaction such that the two nodes connected by the

edge cannot be simultaneously active (transmitting).

In the mean-field hard-core model that we discuss in

this manuscript, we specify a degree distribution and

consider the large-system limit, where the number of

nodes is sent to infinity, in order to allow statistical-

mechanics analysis of such models. A comprehensive

review of the studies on such models can be found

in [14].

II. MODEL

Let us consider a wireless network where CSMA

is used for medium access arbitration. We model the

network using a conflict graph G = (V,E) where

V represents the set of nodes. The set of edges E
represents the pairs of nodes that interfere. More

precisely, an edge (i, j) ∈ E means that nodes i and
j cannot be simultaneously active due to interference

between them. Let s := {si ∈ {0, 1} : i ∈ V } denote

a set of configurations, with si = 1 and 0 representing

the state of node i being active (transmitting) and

inactive, respectively.

Let

p(s;µ, G) =
1

Z

∏

i∈V

eµisi
∏

(i,j)∈E

(1 − sisj), (1)

where µ := {µi ∈ R : i ∈ V } and Z is the partition

function. The probability that node i is active if the

hard-core interactions E were absent is defined via

the parameter µi as ρi0 := eµi/(1 + eµi). We thus

call µi the intensity of node i. The factor (1 − sisj)
represents blocking between nodes i and j so that si
and sj cannot simultaneously be equal to 1.

The intensity µi has the following interpretation.

Assume that there were no hard-core interactions, and

that the state si of node i follows a continuous-time

Markov chain with transition rates ri;0→1 and ri;1→0.

At equilibrium, detailed balance holds:

p(s
(t)
i = 0)p(s

(t+∆t)
i = 1|s

(t)
i = 0)

= p(s
(t)
i = 1)p(s

(t+∆t)
i = 0|s

(t)
i = 1), (2)

yielding

ρi0
1− ρi0

=
p(s

(t)
i = 1)

p(s
(t)
i = 0)

=
p(s

(t+∆t)
i = 1|s

(t)
i = 0)

p(s
(t+∆t)
i = 0|s

(t)
i = 1)

=
ri;0→1

ri;1→0
. (3)

By the definition of the intensity µi, one can let

eµi =
ri;0→1

ri;1→0
, (4)

or equivalently, µi = log(ri;0→1/ri;1→0). If one

assumes a saturated scenario, in which every node

always has data to transmit, the above modeling

amounts to assuming that the transmitting time and

the back-off time are independent and exponentially

distributed with means 1/ri;1→0 and 1/ri;0→1, respec-

tively. It should be noted that, even if the distributions

of the transmitting time and the back-off time are not

exponentially distributed, the stationary distribution of

the configuration is given by (1), which was proved

in [15].

Given a conflict graph G = (V,E), the degree

of node i ∈ V is defined as the number of edges

incident to i. Let nd be the number of nodes in V with

node degree d ∈ {0, 1, . . .}. One has
∑

d nd = |V |
and

∑
d dnd = 2|E|. The degree distribution of G is

defined as λ(d) := nd/|V |.
We define random graph ensemble G(|V |, λ), spec-

ified by the number of nodes |V | and the degree

distribution λ, as follows. For d ∈ {0, 1, . . .} prepare

nd ≈ |V |λ(d) nodes with degree d, and also |E| =
(|V |/2)

∑
d d λ(d) edges. Since a node with degree d

is connected to d distinct edges, and an edge connects

two nodes, each graph is realized by connecting d of

the 2|E| end-points of distinct edges to each node (see

Fig. 1). A selection of permutations of the 2|E| end-
points chosen uniformly randomly from all possible

(2|E|)! permutations defines the random ensemble

G(|V |, λ).
Special types of random graph ensembles are reg-

ular ensembles, where the node degrees are constant.

We call a regular ensemble for which the node degrees

are all equal to d a d-regular graph ensemble. In the

rest of this paper, we consider d-regular ensembles.

III. INTERFERENCE ANALYSIS

For a fixed degree distribution, an instance of a

random conflict graph ensemble is asymptotically free

of cycles of finite length in the limit |V | → ∞. It

suggests use of belief propagation for approximately

evaluating marginal probabilities

p(si;µ, G) =
∑

s\si

p(s;µ, G), (5)
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(a) A graph instance.

(b) Random permutation.

Fig. 1: Random graph ensemble.

where p(s;µ, G) is the joint probability distribution

of the configuration s of node activities defined

in (1). Since the configuration s is a vector of bi-

nary elements, messages in belief propagation can be

parametrized by their respective expectation param-

eters. Letting {πj→i ∈ [0, 1] : (i, j) ∈ E} denote

the parameters of the messages, belief propagation

equation is written as

πj→i =
eµj

∏
k∈N(j)\i(1− πk→j)

1 + eµj
∏

k∈N(j)\i(1 − πk→j)
, (6)

where N(j)\i denotes the set of neighbors of node j
in the graph G excluding node i. The belief propaga-

tion equation (6) is applied iteratively to update the

messages {πj→i}, and after convergence, one obtains

an estimate of the marginal probability p(si;µ, G) as

p(si;µ, G) ≈
eµisi

∏
j∈N(i)(1 − πj→isi)

1 + eµi

∏
j∈N(i)(1 − πj→i)

. (7)

In the following analysis we assume that d is a

positive integer and that µi = µ holds for all i ∈ V .

In this case, the above belief propagation equation is

satisfied by letting πi→j = π̄ for all (i, j) ∈ E, where

π̄ is the unique solution of

π̄ = f(π̄; d, µ), (8)

where

f(z; d, µ) :=
eµ(1 − z)d−1

1 + eµ(1− z)d−1
(9)

is the message-updating formula when the incoming

messages are all equal to z. The condition (8) can be

further simplified to

π̄ = eµ(1− π̄)d. (10)

Under the uniform solution ∀(i, j) ∈ E, πi→j =
π̄, the estimated probability (7) of a node i to be

communicating is independent of i, and we use ρ to

denote it. One therefore has

ρ =
eµ(1− π̄)d

1 + eµ(1− π̄)d
=

π̄

1 + π̄
. (11)

The uniform solution ∀(i, j) ∈ E, πi→j = π̄ can

be unstable under the dynamics of message updates in

belief propagation. Indeed, the stability corresponds to

that of a one-dimensional dynamical system

zt+1 = f(zt; d, µ) (12)

around the fixed point z = π̄. The stability condition

reads

(d− 1)π̄ < 1. (13)

Translating the stability condition into the condition

for µ, one observes that the uniform solution πi→j =
π̄ is stable if and only if µ ≤ µc, where

µc = (d− 1) log(d− 1)− d log(d− 2). (14)

This stability condition was first obtained in [16].

When µ > µc, the dynamical system (12) has a

period-2 stable solution. It corresponds to the situation

where two message values π̄+ and π̄− appear alternat-

ingly as the messages are propagated across the graph,

where π̄± = f(π̄∓; d, µ) and π̄+ > π̄−. This argument

implies that when µ > µc, belief propagation may ex-

hibit spontaneous symmetry breaking. However, such

non-uniform solutions with globally broken symmetry

will be invalidated by the mere existence of cycles of

odd length in the graph, and should be just an artifact.

Therefore, we consider the uniform solution in the

following.

It is known that, as µ becomes even larger, the

uniform solution will lose its validity. A necessary

condition for the uniform solution to be valid is what is

called the local stability [14], [17]. It can be derived on

the basis of the radius of the disk containing the bulk

of eigenvalues of a nonbacktracking matrix associated

with the graph G [18], and for the d-regular ensemble

it is given by

(d− 1)π̄2 < 1. (15)
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Fig. 2: The probability ρ of mean-field hard-core

model versus the probability ρ0 without hard-core

interactions, parametrized by degree d.

If the above local stability condition is not satisfied,

more elaborate evaluations will be required.

Figure 2 shows the probability ρ of the mean-field

hard-core model with degree d versus the probability

ρ0 without hard-core interactions, plotted over the

ranges where the local stability condition is satisfied.

From this figure, one can observe that one has to resort

to the elaborate analysis only when ρ0 is very close

to 1. For the remaining case, which would be relevant

to the application of the mean-field hard-core models

to wireless network analysis, the uniform solution

provides a valid description in the large-system limit.

The ratio

r :=
ρ

ρ0
(16)

describes how the existence of hard-core interference

would decrease the probability of nodes to be com-

municating. Figure 3 shows the ratio r versus ρ0 for

d-regular ensembles. The slope at ρ0 = 0 is equal to

−d. For d = 1 the ratio r monotonically decreases

from 1 to 0.5. For d ≥ 2, on the other hand, the ratio

r becomes minimum at ρ0 ∈ (0, 1). The minimum is

characterized by the condition

(d+ 1) + (d− 1)π̄ = (1− π̄)1−d, (17)

which has a unique solution in π̄ ∈ (0, 1) for d ≥ 2.
The markers in Figure 3 show the minima of r.

IV. NUMERICAL EXPERIMENTS

We tested the prediction accuracy of our analytical

results detailed in the previous section using Monte-

Carlo simulation. The main steps used in the simula-

tion are listed in Algorithm 1. The number of nodes

in simulations was 10 000. The parameter nflip was

chosen large enough so that the system equilibrates,
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Fig. 3: Ratio r evaluated for mean-field hard-core

model with degree d versus the probability without

hard-core interactions, ρ0.

and depending on the strength of fluctuation across

trials, the number of trials Ntrial varied between 150

and 300. Figure 4 shows the result where we compare

the analytically obtained value of r with the simulation

data. The analytical result is in close agreement with

the simulation data for ρ0 upto around 0.5. Our data

shows that the agreement for larger ρ0 values gets

better with the increase in the degree d of regular

graph ensembles. The d = 1 case is an exception

because this corresponds to cycle-free isolated two-

node pairs where the theory becomes exact.

for Ntrial times do

Generate conflict graph;

Mark all nodes inactive;

for nflip times do

Select node i randomly;

if i is inactive and flipping its state does

not cause conflict then
Flip the state of i with probability ρ0

end

else if i is active then
Flip the state of i with probability

1− ρ0
end

end

end

Algorithm 1: Sketch of simulation algorithm

We also simulated two scenarios where nodes were

placed on a two-dimensional square lattice and on a

two-dimensional triangular lattice, respectively. Con-

flict graphs were generated for each degree d by

adding edges to d nearest neighbors of each node
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Fig. 4: Comparison of analytical result with simulation

data. S and A indicate simulation and analytical data,

respectively.

using L1-norm to determine the neighbors. If d was

set such that not all equidistant neighbors could be

selected (e.g., d = 2), then a subset of neighbors was

selected systematically (e.g., start from “left” neigh-

bor, scan clockwise until specified number neighbors

are found). Figure 5 shows the simulation results for

these scenarios. Although the assumption underlying

the analysis that the conflict graph is sampled from a

regular ensemble is not valid in these scenarios, the

analytical results derived earlier appear to be a good

approximation for these more realistic models where

interference is limited to local neighborhood.

The observed discrepancy in Fig. 5 between the

analytical result and simulation is due to local geom-

etry induced by the structure of the conflict graphs.

We take a closer look at the discrepancy in the ρ
versus ρ0 plots of simulation data shown in Fig. 6.

One normally expects monotonic behavior of ρ versus

ρ0 curves. Specifically, at a fixed ρ0, ρ(di) should

not be greater than ρ(dj) where di > dj . The data

shows two anomalies. The first anomaly occurs around

ρ0 = 0.5 when the ρ values of a subset of different d
start to converge. For the triangular lattice where nodes

are packed more densely than the square lattice, this

anomaly leads to a surprising behavior where, after

the convergence of ρ versus ρ0 curves, ρ(di) > ρ(dj)
where di > dj . This anomaly is quite pronounced at

low d values and starts to vanish as d is increased

beyond 20. The second anomaly occurs near ρ0 =
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Fig. 5: Comparison of the analytical result derived

for random conflict graph ensemble with simulation

data for localized conflict graphs. S and A indicate

simulation and analytical data, respectively.

5



0.95 when ρ starts to decrease with increasing ρ0.
This second anomaly is present across all d values

that we simulated. The first anomaly is absent in

simulation data for conflict graphs generated from

regular ensembles, as shown in Fig. 7.
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Fig. 6: Non-monotonic behavior.

V. CONCLUSION

We developed a mean-field hard-core model of

interference in CSMA-based wireless networks. We

derived expression for average activity in d-regular

 0

 0.2

 0.4

 0.6

 0  0.2  0.4  0.6  0.8  1

ρ

ρ0

d = 1
d = 2
d = 3
d = 4
d = 5

d = 6
d = 7
d = 8
d = 9

d = 10

d = 11
d = 12
d = 13
d = 14
d = 15

d = 16
d = 20
d = 60

Fig. 7: Absence of the first anomaly in conflict graphs

generated from regular ensembles.

ensemble of conflict graphs and evaluated its accuracy

using Monte-Carlo simulations. We found that the

analytical result is in very good agreement with ex-

perimental data for large d, as well as for small d and

ρ0 / 0.5. We also studied d-regular conflict graphs
defined on square and triangular lattices and found

existence of anomalies. Once again, the analytical

result is in very good agreement with experimental

data for large d but there are significant deviations for

small d and ρ0 ' 0.5 owing to the anomalies. An

implication of large d is dense wireless networks. Our

results are primarily applicable to such networks.
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borová, and P. Zhang, “Spectral redemption in clustering
sparse networks,” Proceedings of the National Academy of

Sciences of the United States of America, vol. 110, no. 52,
pp. 20 935–20 940, Dec. 2013.

7


