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Abstract

In this paper, we focus on large-scale and dense Cyber-
Physical Systems, and discuss methods that tightly integrate
communication and computing with the underlying physical
environment. We present Physical Dynamic Priority Dom-
inance ((PD)2) protocol that exemplifies a key mechanism
to devise low time-complexity communication protocols for
large-scale networked sensor systems. We show that us-
ing this mechanism, one can compute aggregate quantities
such as the maximum or minimum of sensor readings in a
time-complexity that is equivalent to essentially one mes-
sage exchange. We also illustrate the use of this mechanism
in a more complex task of computing the interpolation of
smooth as well as non-smooth sensor data in very low time-
complexity.

1. Motivation

Although the Information Technology (IT) transforma-
tion of the 20th century appeared revolutionary, a bigger
change is on the horizon. The term Cyber-Physical Sys-
tems (CPS) [1] has come to describe the research and tech-
nological effort that will ultimately allow interlinking of the
real-world physical objects and the cyberspace efficiently.
A few other terms have been used to describe similar en-
deavors. The term “Internet of Things,” originally aimed
at RFID-related technologies [2], is gradually becoming a
synonym for Cyber-Physical Systems.

The integration of physical processes and computing is
not new. Embedded systems have been in place for a long
time and these systems often combine physical processes
with computing. The revolution will come from massively
networked embedded computing devices, which will allow
instrumenting the physical world with pervasive networks
of sensor-rich embedded computation [3].

With the march of Moore’s law, size and cost of sensor

nodes continue to decrease, thus enabling the implementa-
tion of systems with increasingly larger number of nodes.
Recently, networks with more than one thousand sensor
nodes [4] have been deployed for collaborative processing
of physical information. It is expected that networks with
hundreds of thousands of nodes will be deployed within
a few years from now, thus realizing Mark Weiser’s vi-
sion [5]. In the long-term, one can expect networks with
millions of sensor nodes in operation. Such large-scale
sensor-rich networked systems will generate an enormous
amount of sensor data. Accordingly, important new chal-
lenges need to be addressed. Such systems require rethink-
ing of the usual computing and networking concepts [6].
Furthermore, given that the computing entities interact with
their environment, often timeliness is of paramount impor-
tance.

To illustrate this vision, consider a large-scale dense net-
worked sensor system whose nodes have a common sensing
goal to measure temperature. Now consider the problem
of computing a simple aggregate quantity: the minimum
(MIN) sensed temperature among the nodes at some given
moment. Computing MIN seems trivial, but for systems
such as those described above, it poses an important prob-
lem – communicating sensor data individually makes the
time-complexity of computing MIN a function of the num-
ber of nodes. This is true even if data aggregation is used.

In multihop networks, nodes may self-organize into a
convergecast tree with a base station at the root. Tech-
niques for computing useful aggregated quantities such as
MIN that offer good performance have been proposed pre-
viously [7, 8]. Such techniques for the convergecast topol-
ogy achieve good performance as a result of exploiting the
opportunities for parallel transmission and of en-route ag-
gregation of data.

Unfortunately, these advantages are lost when all nodes
share a single broadcast domain. In a single broadcast
domain (wired as well as wireless), it holds that: (i) a
broadcast made by one sensor node reaches all other sen-
sor nodes; and (ii) if a sensor node transmits a message,



then it can be received by another sensor node only if the
transmission of the message does not overlap in time with
another message transmission.

Even a small broadcast domain (covering an area smaller
than 10 m2) may contain a few hundred sensor nodes [9].
Furthermore, local aggregation between nodes in geo-
graphic proximity can be used as an intermediate step to
compute aggregated quantities among all nodes in a mul-
tihop network; and hence the solution to the problem of
computing aggregated quantities in a single broadcast do-
main forms an important building block for many wireless
(or wired) sensor network applications [10].

2. The (PD)2 Protocol

We have an ambition: being able to compute MIN (or
MAX) with a time-complexity that is independent of the
number of sensor nodes. In fact, we want to compute MIN
with a time-complexity that is equivalent to the time of
transmitting a single message, even if thousands of nodes
are in the same broadcast domain. Is this possible? In this
paper, we provide supporting evidence that the answer is in
the affirmative.

Assume a networked sensor system with m nodes where
each node has an n-bit temperature sensor. Computing MIN
implies that all m individual values are compared. Ordinar-
ily, it will take O(m) message transmissions. Furthermore,
due to packet collisions, we can not assume to transmit all
m messages simultaneously.

For the simplicity sake, we assume that the temperature
values are coded as n-bit unique integers. Starting with
the most significant bit first, let each node send the tem-
perature reading bit-by-bit. Let us consider that the chan-
nel implements a logical AND of the transmitted bits and
for each transmitted bit and nodes read the resulting AND
value in the channel (something straightforward in the wired
medium). Finally, suppose that if a node reads ‘0’ and is
transmitting a ‘1’, it stops transmitting. Then, at the end
of the transmission of n bits, the “observed” value in the
channel will correspond to the MIN. It is as if all m tem-
perature readings were transmitted in parallel. Observe that
for this case of computing MIN, there is no need for mes-
sage payload. Observe that the responses are generated only
as the result of some query that is received by all nodes of
the broadcast domain. Therefore, it is not required that all
clocks agree on a common time.

There exist medium access control (MAC) protocols that
exhibit this logical AND behavior. This family of proto-
cols is known as Dominance (or, Binary-Countdown) pro-
tocols [11]. In the implementations of this protocol (e.g.,
the Controller Area Network or, CAN), messages have a
unique contention field, which typically corresponds to a
priority that is used to resolve the contention for channel ac-

cess. After the completion of contention resolution phase,
the node having message with the highest priority is granted
channel access.

We propose to use the contention field differently: dur-
ing runtime, the contention (or priority) field is computed
as a function of the physical quantity of interest. We de-
note this simple, but powerful, mechanism as Physical Dy-
namic Priority Dominance ((PD)2) protocol. We advocate
its use as a key component in sensor applications where it
is crucial to compute aggregate quantities with low time-
complexity, even for very dense systems. The (PD)2 proto-
col is in fact an example where communication and compu-
tation are tightly connected with the physical environment,
which is a fundamental feature of CPS.

Besides MIN, it has been shown that (PD)2-like mecha-
nism can be used to compute interesting primitives such as
the maximum of sensor readings (MAX), an estimation of
number of nodes (COUNT) and an estimate of the median
of sensor readings (MEDIAN) [12].

MAX can be obtained by computing the MIN of the dif-
ference between a number that is larger than the largest
possible sensor reading and the sensor readings. The in-
tuition behind our method of estimation of COUNT is as
follows: If the contention field is a non-negative random
number obtained at runtime, then the probability that the
minimum value of the contention field is 0 approaches 1 as
the number of nodes get very large. However, if there are
only few nodes, then it is highly unlikely that the minimum
among the random values is zero. From this observation,
one can see that it is possible to estimate the number of
nodes by computing the MIN of the random numbers. For
more details on COUNT, please see [12]. In this case, MIN
is not a function of a sensed physical quantity, instead it
is a function of random variables which are used to esti-
mate a physical quantity. COUNT can then be used as a
basic building block to estimate MEDIAN. A panoply of
functions may eventually be devised out of protocols simi-
lar to (PD)2 since any logical function can be implemented
in terms of the NAND or NOR primitives.

3. Related Work

The (PD)2 protocol is inspired by Dominance proto-
col [11] that was implemented for wired networks in the
widely used CAN bus [13]. In [12], the authors illustrate
that CAN-enabled platforms can be used to compute vari-
ous aggregate quantities using a (PD)2-like mechanism.

WiDom protocol extends the Dominance protocols
to wireless networks consisting of single broadcast do-
main [14]. Wireless transceivers do not transmit and receive
data simultaneously. Therefore, for wireless networks, a
node “transmitting a 1” performs carrier sensing only. All
nodes “transmitting a 0” transmit simultaneously. Thus,
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those nodes that were “transmitting a 1” (i.e., doing carrier
sensing) and sense a ‘0’ being transmitted stop contending
for channel access any further. Given the growing impor-
tance of wireless sensor networks, this extension is signif-
icant. Later, that work was generalized to multiple broad-
cast domains [15]. It is important to note, however, that the
current implementations of WiDom introduce a significant
overhead. To a large extent, this overhead is due to large
switching time of transceiver’s transmission and reception
modes and to the time needed to perform carrier sensing.
This is, nevertheless, a technological limitation that can be
overcome with adequate hardware (see Section 5.3 in [15]
for a discussion on this issue).

WiDom has also been applied to compute aggregate
values of sensor data in multi-hop wireless sensor net-
works [16]. In this case, the algorithm exhibits a time com-
plexity that depends on the network diameter and on the
range of sensor reading values.

In a recent research, (PD)2-based mechanism has been
applied to compute the interpolation of sensor data [12].
This system has also been implemented on CAN-enabled
platforms. The interpolation algorithm of [12] performs
well for smooth sensor data (or, signals). However, its
performance on non-smooth sensor data degrades. In the
following section, we present an interpolation method for
smooth as well as non-smooth sensor data and sketch a
(PD)2-based solution for it.

4. Interpolation with (PD)2

Consider a WSN deployment monitoring physical enti-
ties such as temperature, humidity, noise, ambient light etc.
In this scenario, one may want to obtain an interpolated map
of these entities over the area of deployment. A subset of
data values combined with their sampling location, hence-
forth referred to as data points, is needed to obtain the in-
terpolation. Smaller subset size translates to smaller cost to
compute the interpolation map. In the following, we con-
sider obtaining the interpolation using (PD)2 protocol in a
single broadcast domain. This assumption implies that ev-
ery node of the domain can compute the interpolated map.

A random selection of data points leads to poor interpo-
lated map (Figure 2d). Suppose that an approximate inter-
polation map is given. Then intuitively, a good strategy for
iteratively improving the accuracy of this map is to include
the data point that differs the most from the approximate
map followed by re-computation of the map. In the follow-
ing, at each iteration t the (PD)2 protocol compares actual
data with the interpolated values of step t − 1 locally and
augments the interpolation data point subset with data from
one of those locations that have the largest deviation. Sim-
ulation shows that such a selection of data points produces
surprisingly good interpolation map.

Similar to the work presented in [12], we use weighted-
average interpolation [17] as the interpolation function.
However, we introduce a new criterion to select the data
points that improves the performance of our interpolation
scheme for non-smooth signals as well. The details of this
interpolation scheme can be found in [18]. We present an
overview of the solution next.

4.1 Interpolation Algorithm

Consider a sensor network where each node has a unique
identifier. Let us denote the location of node Ni by (xi, yi)
and its sensor reading by si. Our solution computes the
interpolation map iteratively, and the number of iteration
steps, k, is assumed to be known to all nodes. Let Q de-
note a set of tuples. Each tuple qi ∈ Q is described by
(xi, yi, si), which corresponds to the location and sensor
reading of node Ni. At the beginning of the iteration, the set
Q is empty. At each step of the iteration, one of the nodes
broadcast its location and sensor data value, which is added
to the set Q. Eventually, the set Q contains k elements.
We use a subset, T (x, y), of Q to compute the interpolation
at (x, y). First, we describe the algorithm to construct Q.
Then we follow up with the description of the algorithm to
construct T (x, y) from Q.

We define f(x, y), the function that interpolates the sen-
sor data, as follows:

f(x,y)=

8>>>>>>>>>>>><>>>>>>>>>>>>:

0 if Q=∅;
si if ∃qi∈Q: xi=x∧yi=y;∑
∀qi∈T (x,y)

si×wi(x,y)∑
∀qi∈T (x,y)

wi(x,y)
otherwise,

(1)
where the weights wi(x, y) are given by:

wi(x, y) =
1

(xi − x)2 + (yi − y)2
. (2)

The first case of Equation 1 represents the initialization.
The second case states that if the exact data at some loca-
tion has been communicated, then the exact value is used
as the interpolated value. The third case states that the in-
terpolated value is a weighted average and the weight is the
inverse of the square of the distance.

We construct the set Q by successively adding tuples of
those nodes Ni that have the largest difference between the
interpolated sensor reading f(xi, yi) and the actual sensor
reading si. Formally, let the magnitude of the interpolation
“error” at node Ni be defined as:

ei , |si − f (xi, yi)| . (3)

The node with the largest ei is selected for broadcasting
its data point. This reduces the problem of selection of most
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Figure 1. Interpolation at a point P

suitable data point for interpolation to the problem of find-
ing MAX. We discussed obtaining MAX using the (PD)2

protocol in Section 2. Observe that the winning node must
also broadcast its position. In order to broadcast a packet
after winning the channel access without collision, we must
ensure a unique winner. We achieve this by appending the
node ID to the contention field. Upon k broadcasts of data
points the construction of the set Q completes.

Now, we describe construction of set T (x, y), which is
used to compute the interpolation at location P (x, y) using
Equation 1. Consider the region containing nodes N1 and
N2 in Figure 1. To obtain interpolation at P , we consider
N1’s data only – irrespective of the difference in the data
values at N1 and N2. Intuitively, if the difference is signif-
icant, for example due to a wall in between the two nodes,
then taking N2’s data into account will lead to interpola-
tion inaccuracy. In other words, N1’s data “masks” N2’s.
Following this argument, we use the nearest neighbor of P
from each of the sectors to construct T (x, y). Therefore,
in this example, T (x, y) = {N1, N3, N4, N5, N6}. More
details can be found in [18].

4.2 Simulation Experiments

We evaluated the performance of our interpolation solu-
tion using simulation (We implemented our own simulator
in C.) We generated a bathtub looking non-smooth sensor
data distributed over 1000X1000 grid (Figure 2a). It may be
noted that this data represents a general distribution of heat
in a room, albeit inverted [12]. We added uniformly dis-
tributed random noise to this data distribution (Figure 2b)
and we used the resulting data with noise for the evaluation
of our algorithm.

Figure 2c shows the interpolation map obtained after
only 20 iterations. The data points selected in the iterations
on the basis of largest error by (PD)2 protocol are marked
with a bar parallel to the z-axis. In Figure 2d, we present an
interpolated map based on random sampling of data points.

One can easily see the merit of our algorithm by comparing
these two figures. Figure 2e shows the result of sampling
1000 data points, which is only 0.1% of the input size. Even
at such a small sample fraction, the reproduction of the orig-
inal data distribution becomes remarkably accurate.

5. Discussions

This work focused on a single broadcast domain. Our
previous work [16] has however shown how to compute
MIN and MAX in a network where a single broadcast does
not reach all sensor nodes. The main idea is simply to form
clusters such that all nodes in a cluster are in a single broad-
cast domain, perform the aggregated computation in each
cluster and then perform convergecast between all cluster
heads. The same idea can be used for obtaining an interpo-
lation of sensor readings even in a network where a single
broadcast does not reach all sensor nodes.

Network coding [19] is a recently proposed technique for
improving throughput in multihop networks. The main idea
is to forward a packet which is not identical to an incoming
packet; instead the forwarded packet is a function (for ex-
ample average values) of incoming packets. Our approach
can also be combined with network coding. Consider the
example where we are interested in finding both the MIN
and the MAX of all sensor readings in the entire network
and consider a network which is not a single broadcast do-
main. We can cluster nodes and apply the MIN and MAX
algorithm in each broadcast domain. We can now consider
the network as a network of only cluster heads (and some
extra nodes to ensure that cluster heads are connected). We
are now facing a network where each cluster head can be
treated as a source node for MIN and MAX and the desti-
nation of these flows are a sink node. Network information
coding can be applied on that network.

6. Conclusions

In this paper we address a problem of paramount impor-
tance: how to compute aggregate quantities in large-scale
dense sensor-rich networks. We advocate that mechanisms
such as the proposed Physical Dynamic Priority Dominance
((PD)2) protocol can be used to devise distributed algo-
rithms able to compute simple aggregate quantities such as
MIN, MAX and even less obvious ones such as COUNT,
with an extremely low time-complexity. With the use of
such a mechanism, MIN (or MAX) can be computed with
a time-complexity equivalent to the time to transmit a sin-
gle value. We illustrated a further use of this paradigm by a
brief description of our ongoing work to compute approxi-
mate interpolations of sensor data.

(PD)2 based approaches are a significant example where
communications and computations are tightly connected
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(a) Original Signal (b) Original Signal with Noise

(c) Improved Scheme (k = 20) (d) Random Data Points (k = 20) (e) Improved Scheme (k = 1000)

Figure 2. Interpolation Example

with the physical environment. One of the key aspects
of computing aggregate quantities with (PD)2-based ap-
proaches is scalability. Our experience with an ongoing
work that exploits such mechanisms on hardware platforms
has led us to conclude that this research direction is very
promising.
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