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Abstract—Timely delivery of data in safety-critical as well
as real-time Internet of Things (IoT) applications is impor-
tant. Contention-based medium access control (MAC) protocol
stacks make channel access delay non-deterministic. Since
both contention-based and contention-free MAC protocols are
currently in use in various standards, a solution that is
agnostic to protocol stack is explored in this paper. Finding
a minimum makespan conflict-free schedule can be reduced to
graph coloring problem which is known to be NP-complete.
This problem becomes challenging in IoT networks since the
devices are resource limited. This paper presents a method for
short makespan conflict-free schedule search that can be im-
plemented on resource limited IoT nodes with no dependency
on a solver package. Experimental results from simulation and
a proof-of-concept testbed are presented.

Index Terms—Deterministic Networking, Quality of Service,
Industrial IoT, Knowledge Base, Constraint Satisfaction

I. INTRODUCTION

Timely delivery of data in safety-critical Internet of
Things (IoT) applications is necessary for proper functioning
of the system [1]. Achieving bounded delay is a major
challenge in these networks due to the nodes having limited
capabilities, heterogeneity and large scale. Carrier Sense
Multiple Access with collision avoidance (CSMA/CA) is a
contention-based distributed medium access control (MAC)
protocol. While CSMA has been shown to be throughput
optimal [2], it is not fair [3], [4]. This can lead to un-
bounded medium access delays which is highly undesirable.
A conflict-free Time Division Multiple Access (TDMA)
can provide deterministic channel access and thus bounded
delays. Both CSMA-based and TDMA-based protocol stacks
are currently used in IoT and Industrial Internet of Things
(IIoT) standards. Though several MAC protocols designed
to provide deterministic channel access have been proposed
in the literature [5]–[8],their practical applicability had been
limited. The approach explored in this work is to provide
a conflict-free medium access abstraction to the application
which is agnostic to the underlying protocol stack.

We consider the general scenario in an IoT network where
a node transmits (sends or forwards) a mix of time-sensitive
and best-effort data. A conflict-free medium access schedule
is needed for the time-sensitive traffic. This schedule also
needs to accommodate the best effort traffic requirements by

maximizing the opportunities for the transmission of these
packets. In this paper, we solve the problem of creating a
conflict-free schedule for time-sensitive transmissions such
that the makespan of the schedule is small. Note that mini-
mizing the schedule makespan is reducible to edge coloring
problem which is known to be NP-complete. Further, solver
packages such as IBM CPlex and Google OR-Tools [9]–[11]
have too large a memory footprint and resource requirements
to be of practical use in a typical IoT/IIoT network. Since
the search space gets very large for even moderate size
networks [12], the main challenge is to find methods that
can scale to networks of hundreds of nodes and can be run
on low-cost limited-capability devices.

A conflict graph is defined by a set of vertices and edges
where an edge connects a pair of vertices whose simulta-
neous transmissions can cause interference. The objective is
to find schedules for each node such that any two nodes
connected by an edge in the conflict graph representa-
tion of the IoT network do not share a common slot for
transmitting time-sensitive traffic. Starting with the conflict
graph representation and data rate requirements, a constraint
satisfaction problem (CSP) formulation and a propositional
knowledge base (KB) are constructed which are solved
to obtain conflict-free schedule of short makespan. A KB
approach can provide better integration with AI systems.

As discussed in Sec. III, directly solving the KB for-
mulation is slow. First solving the constraint satisfaction
problem (CSP) formulation and then adding the solution to
the KB as constraints reduces the search space considerably,
speeding up the inference in KB significantly. The CSP
solution guarantees conflict-free transmissions and produces
a minimal makespan schedule. Then with this solution added
to the KB as a constraint, the inference then produces
augmented schedules where slack within the time-sensitive
transmission schedule is identified and allocated to the nodes
as extra slots.The KB inference ensures that these new
allocations do not conflict with existing schedule. These
extra slot allocations along-with the unscheduled part of the
frame can then be used for transmitting the best-effort traffic.

This paper is organized as follows. We present system
model in Sec. II. Conflict-free scheduling approach is de-
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scribed in Sec. III. Details of a proof-of-concept imple-
mentation and experimental results is presented in Sec. IV.
Related work is presented in Sec. V.

II. SYSTEM MODEL

Consider a network where each node transmits (sends or
forwards) a mix of time-sensitive and best-effort data. We
divide the unit time interval into T timeslots where the slot
duration is large enough to transmit the largest frame in a
single slot plus the upper bound on operating system and
channel access delays, a part of which is non-deterministic.
Further, suppose that each node v ∈ V requires nv ≤ T slots
per time unit for transmitting the time-sensitive data where
V denotes the set of nodes. Our objective is to construct
a conflict-free schedule for all the nodes such that the
makespan of the schedule for time-sensitive transmissions
is minimized. This ensures that all the time-sensitive traffic
requirements are met and the number of remaining slots
(out of T ) used for the best effort traffic is maximized. In
addition to minimizing the makespan, any slack within the
time-sensitive transmission schedule is also made available
to the nodes for increasing the best-effort throughput, which
is referred to as schedule augmentation. This schedule
augmentation is done in a such manner that the schedule
remains conflict-free.

In a conflict-graph G(V ,E) representation of a network,
an edge (vi, vj) ∈ E exits if simultaneous transmissions
of vi and vj can interfere (Fig. 1a). Thus an edge in G
represents the constraint that at-most one of the two nodes
that the edge connects can be active at any given time.
Nodes may have non-homogeneous time-sensitive data-rate
requirement. For example, a temperate sensing device on
a motor might be configured to send sensor readings at a
higher rate than the one that monitors room temperature. Or,
a node might be routing such traffic from several sources.
Consider the rate requirements in the form of number of
slots. The non-homogeneous rate demand is handled by
transforming the initial conflict graph to a conflict graph
with homogeneous rate demand as follows. Suppose a node
v requires nv > 1 slots per frame, i.e., per T timeslots.
The transformation is done by replicating the node v nv

times, joining all the node replicas with the same set of
neighbors, and then fully connecting all the replicas of nv .
In the example shown in Fig. 1a, suppose A requires 2 slots
and all the other nodes require 1 slot. Then the conflict
graph is transformed by replicating A twice as A1, A2 and
connecting these by edges to the neighbors of A in the
base conflict graph. Finally, A1 and A2 are connected by
an edge (Fig. 1b). Thus in the transformed conflict graph
all the nodes have homogeneous time-sensitive data rate
requirement. In the rest of the paper, we will consider the
transformed conflict graph.

An edge device or a network coordinator is assumed
to compute and disseminate the schedules. It is assumed
that nodes perform neighborhood discovery periodically. A

(a) Conflict graph

A1

A2

(b) Transformed conflict graph
Fig. 1: Transformation to homogeneous rate requirement
conflict graph

number of energy-efficient neighborhood discovery methods
have been reported in the literature [13]. The neighborhood
list is assumed to be stored and maintained by the edge
device. Nodes also communicate their data rate requirement
to the edge device. The conflict graph is inferred on the basis
of neighborhood and bandwidth requirements, as discussed
previously. We also assume that the clocks of all the nodes
are synchronized to a common time source. An application
layer program initiates transmissions at the beginning of its
assigned slots.

III. KNOWLEDGE-BASED SCHEDULING APPROACH

Schedule search using propositional KB is described in
this section. Inference in a propositional KB is known to be
co-NP-complete. In order to reduce the complexity of KB
inference, we first solve a constraint satisfaction problem
(CSP) formulation using a fast search algorithm and then
add the CSP solution to the KB as a new constraint. Seeding
the inference reduces the search space considerably which
relaxes the need to use high-end compute platforms for solv-
ing large instances. In our experiments, without adding the
CSP solution to the KB, Davis-Putnam-Logemann-Loveland
(DPLL) algorithm could not terminate on modest 25 node
instances even after running for six hours.

A. CSP Formulation

Let A ∈ {0, 1}N×N be the adjacency matrix representa-
tion of the homogeneous conflict graph at some given time.
In other words, Aij = 1 if i and j are connected by an
edge in the conflict graph and 0 otherwise. Based on A,
define a CSP where X = {Xi}, i = 1, 2, . . . , N is the set
of variables and D = 1, 2, . . . , N is the set of domains.
Each node in the conflict graph is represented by one Xi.
The assignment Xi = Dk means that the node represented
by Xi can transmit in slot k. The set of constraints C is
defined as C = {Xi ̸= Xj} for all (i, j) where Aij = 1.
In other words, any node pair connected by edge in conflict
graph is not scheduled simultaneously. The solution of this
CSP forms a part of the KB as discussed later.

Backtracking search is commonly used to solve a
CSP [14]. Several heuristics have been studied to im-
prove the performance of backtracking search [12]. We
experimented with two modifications, referred here as
Backtracking-Search and Backtracking-Search-AC3.
The Backtracking-Search algorithm selects the first
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TABLE I: Heuristics used in CSP search

Backtracking
Search

Backtracking Search
AC-3

Next unassigned
variable selection

First unassigned
variable found

Variable with smallest
number of legal values

Next domain value
selection

No particular or-
der

Value with the smallest
number of conflicts

Consistency check Not used AC-3

unassigned variable for assignment and assigns it the do-
main value in no particular order. On the other hand,
Backtracking-Search-AC3 uses the variable with small-
est number of legal values and assigns it the value with the
smallest number of conflicts. A major difference between the
two is that Backtracking-Search-AC3 uses AC-3 algo-
rithm for consistency check. AC-3 has worst case time com-
plexity of O(e|D|3) where e is the number of edges in the
conflict graph which makes Backtracking-Search-AC3

slower. A comparison of the two is summarized in Table I.
AC-4, an optimized version of AC-3, has better worst case
time complexity of O(e|D|2), but AC-3 has been found to
be superior [15]. Since the domain values are first assigned
in order, both produce minimal makespan schedules.

An evaluation of the two backtracking search algorithms
was done on instances of varying sizes of conflict graphs
where node locations were distributed uniformly randomly
in a rectangular area. Interference range was defined and
nodes separated by distance within the range were connected
by edge. For the larger instances, spatial reuse was also taken
into account and the average node degree was kept near 20.
The implementation was done in Python language and tests
were run on a PC with 3.4+ GHz 12th generation Intel Core
i7-1260 processor and 16 GB RAM.

The makespan of the time-sensitive transmission sched-
ule returned by both the search methods are comparable,
as shown in Fig. 2. Each data point represents the av-
erage over a sample of 100 instances of randomly gen-
erated networks. As shown in the figure, the makespans
of the CSP schedules were close to the average node
degree. Due to spatial reuse, the makespan grows sub-
linearly and tends to flatten out. The search time of
Backtracking-Search was smaller by at-least one order
of magnitude than that of Backtracking-Search-AC3. For
the case of 250 nodes, Backtracking-Search took 29ms
but Backtracking-Search-AC3 took 350ms. Further, the
search time of Backtracking-Search-AC3 grows super-
linearly with node count due to its dependence on the
number of edges.

B. KB Formulation

In the CSP schedule, each node in the transformed conflict
graph is scheduled once and only once. Solution of the toy
example given in Fig. 1a returned by the CSP search is
shown in Fig. 3a (assume that all the four nodes require 1
slot per frame for time-sensitive data). This schedule can be
further augmented by scheduling B in the last slot along
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Fig. 2: Schedule makespan and search time

with D (Fig. 3b). The model search over the propositional
KB described below performs the schedule augmentation
while keeping it conflict-free.

A
B
C
D

(a) CSP solution: conflict-free schedule

A
B
C
D

(b) KB solution: Augmented CSP schedule
Fig. 3: Schedule augmentation

Suppose the makespan of the schedule returned by CSP
search is M ≤ N . We construct a propositional KB as
follows. Symbols

Sm,n,m = 1, . . . ,M ;n = 1, . . . , N (1)

indicate whether node n is scheduled during slot m. Thus,
Sm,n is true if node n is scheduled during slot m. Rules of
the from

¬(Sm,n ∧ Sm,n′),m = 1, . . . ,M (2)

are added to the KB for all node pairs (n, n′) connected by
an edge in the conflict graph. These rules correspond to the
conflict-free schedule requirement.

Non-homogeneous data-rate requirement was handled by
conflict graph node replication earlier. Accordingly, rules of
the form

S1,n ∨ S2,n ∨ . . . ∨ Sm,n, n = 1, . . . , N (3)

are added. These rules correspond to the requirement that
each node must be scheduled at-least once.
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Finally, we add the CSP output as a rule to seed the
search:

Sm1,1 ∧ Sm2,2 ∧ . . . ∧ SmN ,N ,mi ∈ {1, . . . ,M}, (4)

where mv is the slot in which node v is scheduled. Adding
this rule helps in reducing the search space and also makes
the rule (3) redundant. Moreover, it decouples the model
search for one time slot from another, thus further reducing
the search space considerably. Giving slot-wise instances
to the DPLL algorithm one by one produces all the valid
models for the particular slot. Out of all the models it
returns, the model that schedules the largest number of nodes
in a particular slot is selected. Instead of maximizing the
utilization per timeslot, fairness or some other metric could
also be used.

In the experiments, schedule augmentation improved the
average number of slots per node by over 50% from the
baseline CSP solution of exactly 1 slot per node. Using the
setup described earlier for evaluating the two CSP solvers, a
KB was constructed for each network instance, the two CSP
solutions were added to the KB one at a time and solved
separately for comparison. The results are shown in Fig. 4.
The improvement to the Backtracking-Search schedule
is a bit higher because the makespans were larger.
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Fig. 4: Scheduled throughput after solving the KB

C. Evaluation on Raspberry Pi

We also evaluated the implementation on a Raspberry Pi 5
board. The board had 2.4 GHz quad-core 64-bit Arm Cortex-
A76 CPU and 4GB RAM [16]. A comparison of the average
makespan of schedule and KB inference time with those
obtained on a PC whose specification was described earlier
shows that this method can be used on low-end devices
(Fig. 5). This figure shows the results of KB inference
where Backtracking-Search-AC3 was used for solving
the CSP formulation. Each data point is an average over
100 randomly generated network instances. The average
time taken by the KB inference procedure (including the
CSP search phase) to produce a set of schedules on a
network of 100 nodes was approximately 95 s. We gave a
25 node network instance to the KB inference without the
CSP solution added as constraint and ran the implementation
on the PC. The search did not terminate even after running
for 6 hours. On the other hand, schedules for instances of
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Fig. 5: Comparison of makespan and KB inference time
(including the CSP solution time) on Raspberry Pi and PC
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Fig. 6: Average per timeslot utilization of CSP and KB
solutions

over 100 node networks could be produced on Raspberry
Pi board in a short time using the method described above.
We note that this inference time can further be reduced by
applying suitable early stopping criteria.

D. Discussion

A comparison of average per timeslot utilization and
search time of CSP and KB solutions is shown in Fig. 6,
where the utilization in a given timeslot is defined as the
number of nodes scheduled in that timeslot. The choice
of the most suitable method depends on the timescale
of the system and capabilities of the edge device or the
coordinator. The utilization of the KB schedules was about
1.5 times that of the CSP schedules. The DPLL infer-
ence time, however, dominates the CSP search time for
the two variants of backtracking search by about 2-3 or-
ders of magnitude. However, KB inference when seeded
with the schedule given by Backtracking-Search-AC3

produces shorter makespan schedules with higher per
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TABLE II: Schedule search time on PC and Raspberry Pi

CSP CSP & AC-3 KB KB & AC-3

PC, 50 nodes 1.7 ms 52 ms 1.31 s 1.23 s
RPi, 50 nodes 3.32 ms 123.22 ms 2.56 s 2.37 s
PC, 100 nodes 10.7 ms 0.35 s 37.01 s 32.49 s
RPi, 100 nodes 20.29 ms 1.16 s 93 s 66.90 s

slot utilization in lesser amount of time (Table II). The
smaller makespan schedule results in faster search for
augmented schedule. On the other hand, the makespan
of the time-sensitive transmission schedule returned by
both the CSP solution methods Backtracking-Search

and Backtracking-Search-AC3 are comparable (Fig. 2)
but Backtracking-Search is faster by one to two orders
of magnitude. Thus in short timescale situations, a good
strategy would be to set a search time limit, obtain CSP
schedule using Backtracking-Search, perform KB infer-
ence terminating the search at the set time limit and use
the partially augmented schedule. When the timescale is
large enough, using Backtracking-Search-AC3 for the
CSP schedule followed by KB inference performs better.

IV. PROOF-OF-CONCEPT IMPLEMENTATION

To evaluate MAC agnostic scheduling, we implemented
a proof-of-concept system on a testbed consisting of Rasp-
berry Pi Pico W boards [17] as shown in Fig. 7. These boards
have 133 MHz dual-core Arm Cortex-M0+ processor, 264kB
on-chip SRAM, 2MB RAM and 2.4GHz 802.11n for wire-
less connectivity. The Pico nodes received schedule from a
PC and were synchronized using NTP. The application was
implemented in MicroPython.

Fig. 7: Experimental setup

The setup consisted of 9 Pico W nodes. All the nodes
were in the same broadcast domain, connected to the same
802.11 router (not shown in the figure). Each node, upon
synchronization using NTP, broadcasted 225 Byte messages
during its assigned slots. The payload included sequence
number, timestamp, node identifier (IPv4 address) and a
random string. Broadcasts from all the nodes were logged
at a PC for analysis. In this test, the slot duration was 0.1 s
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Fig. 8: The distribution of inter-arrival time

and the frame duration was 0.9 s. Starting with one of the
nine slots, each node was assigned every 9th slot. Thus, each
node attempted one transmission every 0.9 s.

Since the timestamps were generated at the application
layer, we consider inter-arrival delays. Fig. 8 shows the
histogram of 900 packet inter-arrival times at the PC from
the Pico nodes. The mean inter-arrival time from a given
source node was 0.9 s and standard deviation was 0.0043 s.
The minimum and maximum inter-arrival times across all
source nodes were 0.8723 and 0.9289 s, respectively. This
corresponds to a maximum jitter equal to 29ms. The jitter
is primarily due to non-deterministic channel access and
operating system delays. Zero packet loss was observed.
Thus, protocol stack agnostic conflict-free scheduling at the
application layer can achieve deterministic delays except
for the jitter due to the underlying system and protocol
stack delays, which must be taken into consideration for
determining the timeslot duration.

V. RELATED WORK

Minimum makespan scheduling problem has been shown
to be intractable [18], [19]. Several MAC protocol designs
for providing bounded delay in wireless sensor networks
have been reported in the literature. TRAMA [20] is a
TDMA-based MAC protocol that is designed to provide
collision-free transmissions. ZMAC [6] is another MAC
protocol for sensor networks. It is a hybrid protocol that
operates in CSMA mode under light load conditions and
in TDMA under heavy load conditions. A logical regular
topology backbone based design for bounded end-to-end
delay scheduling in sensor networks is presented in [21]. The
logical regular topology enables low-complexity scheduling
policies. A survey of previous work on reducing latency in
the Internet is presented in [22]. However, reducing delay is
not the same as providing worst-case delay guarantee.

Time Sensitive Networking (TSN) is a set of IEEE stan-
dards designed to provide deterministic services over Ether-
net [23]. The mechanism for bounding end-to-end latency in
TSN involves synchronized nodes, centralized network co-
ordinator, scheduled flows, separating time-sensitive traffic
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from best-effort traffic, frame preemption and policing time-
sensitive traffics. TSNsched [24] is a tool which generates
schedules for TSN. It takes as input a network topology,
including the network flows, and network performance
requirements, including values for the maximum latency
and jitter per flow. Extending TSN to wireless networks
is of current research interest [25], [26]. WiFi TSN is a
system designed to provide deterministic delay in wireless
networks [27]. The design of WiFi TSN offers integration
of IEEE 802.11 with the wired TSN standard. Widespread
use of TSN in IoT/IIoT networks in near future is unlikely
primarily because of its complexity.

VI. CONCLUSION

Conflict-free scheduling enables bounding delay which is
needed in safety-critical and real-time IoT/IIoT applications.
This paper presented a protocol stack agnostic approach for
conflict-free scheduling of the time-sensitive data. Since the
problem is intractable, the resource limitations in IoT/IIoT
devices pose a major challenge. We discussed how combin-
ing the result of backtracking search on a CSP formulation to
a KB formulation and then using DPLL to solve it can pro-
duce conflict-free schedules on resource-limited devices. It
turns out that the fast backtracking search alone can produce
good (short makespan) schedules and is especially useful for
dealing with very large instances. Results of experimental
evaluations presented here support the effectiveness of the
proposed method. A trade-off for using the protocol agnostic
approach is that the slot duration needs to accommodate
the overhead of the operating system and protocol stack
delays, in addition to the data transmission time. A margin
of about 30ms was found to be sufficient for Pi Pico nodes
that use IEEE 802.11. This is not necessarily a limitation
in a typical IoT/IIoT scenario where the data rate is low.
Further reducing the KB inference complexity and making
the method distributed are interesting future directions.
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