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Abstract—Intelligent reflecting surfaces (IRS) are surfaces con-
sisting of an array of a large number of passive but individually
controlled reflecting elements. This paper explores the use of ge-
netic algorithms for optimal allocation of the reflecting elements
in a multi-user setting. In particular, it considers maximizing the
sum-rate and equalizing the throughput in a wireless environment
consisting of multiple co-located IRSes. A real-coded genetic
algorithm for solving this problem is presented. Experimental
results suggest that the method is effective.

Index Terms—Intelligent reflecting surfaces, IRS element allo-
cation, Genetic algorithms, Sum-rate maximization, Throughput
equalization.

I. INTRODUCTION

Intelligent Reflecting Surfaces (IRS) consist of an array
of passive but individually configurable scattering elements.
The electromagnetic properties of the individual elements
can be controlled using software for creating smart wireless
environments. In comparison with the conventional approach
of improving the transmitter and the receiver, IRS adds the
capability of controlling and optimizing the wireless environ-
ment which can be used for overcoming blind areas, increasing
data rate at selected locations, backscatter communications and
enabling many other novel applications by coating objects
with sensing IRS [1], [2]. IRSes are particularly suited for
millimeter wave communications [3] and are envisioned to be
the enabler of low latency applications in 6G networks.

There have been extensive studies on the physical layer
aspects of IRSes and IRS-aided networks. Several results exist
where power, phase shift, subcarrier and reflection coefficient
are optimized for sum-rate maximization and energy min-
imization [4]–[7]. However, medium access control (MAC)
related issues in IRS-assisted networks are largely open [8].
This paper addresses allocation of IRS elements to the users
for sum-rate (or throughput) maximization and throughput
equalization in a setting involving multiple co-located IRSes
where multiple users are served simultaneously. Given channel
gains, transmit power and reflection coefficient as input, this
work solves the problem of assigning a particular IRS and
determining the number of elements to a user. From the results
in [9], it is straightforward to see that this problem is NP-
hard. In the MAC framework presented in [10], the number
of elements of an IRS is divided equally among orthogonal
subchannels forming “RIS groups,” and users are associated

with an RIS group. In [8], the design of MAC architectures
are presented where TDMA is used within orthogonal sub-
channels. Time, frequency, transmit power and IRS phase
configuration is computed for each user. The use of AI/ML is
proposed to overcome the excessive computational complexity
associated with search in high-dimensional space.

Genetic algorithms are metaheuristics that have been found
to perform very well on several intractable problems, such
as, Traveling Salesman Problem [11], multiprocessor schedul-
ing [12], project scheduling with resource limits [13] and solv-
ing Sudoku puzzles [14]. More recently, genetic algorithms
have been used to design and assist neural networks [15], [16].
Optimization of phase shifts of IRS elements using genetic
algorithm has been reported in [17], [18]. A study of the use
of genetic algorithms for the allocation of IRS elements is
presented in this paper. The algorithm essentially takes channel
gains for all paths as input and produces IRS assignments and
element allocation for each user. Its performance is evaluated
and compared with BlackBoxOptim optimizer [19] and direct
source to destination line-of-sight sum-rate as the baseline.
Experimental results suggest that the genetic algorithm is
effective in solving this problem.

The rest of this paper is organized as follows. We present the
problem formulation in Section II followed by a description
of the genetic algorithm in Section III. We present the exper-
imental details and results in Section IV, and conclusions in
Section V.

II. PROBLEM FORMULATION

We consider IRS-aided multi-user communication systems
where M IRSes assist the transmissions between N users and
a base station. Let each IRS consist of L reflective elements.
Given the channel characteristics between the users and the
base station, the users and the IRSes and the IRSes and the
base station as the input, an optimal assignment of an IRS
combined with the allocation of IRS elements to all the users
is computed. The base station, assumed to be able to control
the IRS controllers, then notifies the respective controllers.
This can be a model for scheduling a subset of N users in
a TDMA slot (the subset of users can change from one slot
to another). This can also be a model for the saturated node
scenario where the transmit buffers of the N users is never
empty.
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Consider deterministic line-of-sight flat fading channel be-
tween the base station and the user, between the base station
and IRS and between the IRS and the user. Let βsd ∈ [0, 1]
and βIRS ∈ [0, 1] denote the channel gains between the base
station and the user on the direct path and on the path via
IRS, respectively. The channel gain between a user and a base
station through an IRS varies for different elements of the IRS.
In the following, we assume that the physical dimensions of
the IRS are small enough so that the deviations of the element-
wise channel gain from the IRS average, βIRS, are negligible.
Let µ ∈ (0, 1] be the amplitude reflection coefficient of the
IRS. We denote the variance of the additive white Gaussian
noise at the receiver by σ2. If l reflective elements are allocated
to a user then the SNR at the receiver is

SNRIRS =
P (
√
βsd + lµ

√
βIRS)

2

σ2
, (1)

where P is the transmit power [20]. Let the users be assigned
orthogonal subchannels where the vector B ∈ RN denotes
the bandwidth allocated to each user. In the following, we use
notation of the form li,j to denote the (i, j)th element of the
matrix l. The data rate for user i via direct path and IRS j is
given by

ρi,j(li,j) = Bi log2(1 +
Pi(
√
Hi + li,jµ

√
Gi,j)

2

Biσ2
), (2)

where P ∈ RN , l ∈ NN×M , H ∈ RN denotes the vector
containing βsd and G ∈ RN×M denotes the matrix containing
βIRS. We define the sum-rate maximization problem with the
constraint that each user gets non-zero rate as:

max
l

N∑
i=1

Bi log2(1 +
Pi(
√
Hi +

∑M
j=1 li,jµ

√
Gi,j)

2

Biσ2
)

(P1)

s.t.
∑
i

li,j ≤ L ∀j, (3a)

li,j ∈ {0, 1, . . . , L} ∀i, ∀j, (3b)∑
j

1(li,j > 0) = 1 ∀i, (3c)

ρi(l) > 0 ∀i (3d)

1() is the indicator function. Constraint (3c) ensures that all
the elements allocated to a given user are assigned from only
one IRS in order to avoid interference caused by the signals
reflected from multiple IRSes.

The sum-rate maximization problem (P1) usually leads to
large variations in the user rates, which was also observed
in our evaluations. Consequently, we define the throughput
equalization problem where the objective is the minimization
of the variance of data rates:

min
l

var(Bi log2(1 +
Pi(
√
Hi +

∑M
j=1 li,jµ

√
Gi,j)

2

Biσ2
))

(P2)
s.t. (3a)− (3d)

355.67 2.45 255.56 2.22 367.85 1.5 600.31 3.66

Fig. 1: Example of chromosome encoding for 5 users

As stated earlier, these discrete optimization problems are
NP-hard. The next section presents a genetic algorithm de-
signed to solve these problems.

III. GENETIC ALGORITHM

A. Preliminaries

Genetic algorithms are metaheuristic and belong to the
class of so-called population methods. Unlike gradient descent
based methods and simulated annealing where a single design
point is used to guide the search, in genetic algorithms
the search begins with a set of design points, called initial
population, that are supposed to be distributed throughout
the search space. The search is then guided by evolving a
set of design points that are closer to the optimal in an
iterative manner. The iterative evolution of the design points,
called chromosomes, is made to resemble natural selection
and consists of three steps, namely, selection, crossover and
mutation. The selection process determines the good chro-
mosomes using a given fitness function and replicates them
while discarding the bad ones. The crossover process creates
new chromosomes from the population left after the selection
process by splicing two solutions at one or more crossover
points. Lastly, mutation alters the chromosomes at random
locations to maintain diversity and to avoid getting stuck in
local minima. After each iteration, the evolved population
is evaluated and the algorithm stops when the terminating
condition is satisfied. Please refer to [21] for more details.

B. The Algorithm

The following algorithm is a so-called real-coded genetic
algorithm. These genetic algorithms are known to be ro-
bust and suit the optimization problems being solved here.
In the following we describe chromosome encoding, initial
population generation and the fitness function. As described
in the preliminaries, after the initial population generation
the algorithm carries out selection, crossover and mutation,
in order, iteratively. The methods used in these steps are
specified below. At the end of each iteration the fitness of
the population is evaluated. The algorithm terminates if the
termination condition is satisfied.

Encoding: The chromosomes are encoded as vectors of
floating point numbers in R2N where odd indices contain
elements allocation li,j ∈ [1, L+ 1) and even indices identify
the IRS j ∈ [1,M + 1) (Fig. 1). The integral solution is
recovered by rounding down each of the 2N elements of the
fittest chromosome.

Initial population: The initial population is generated by
drawing element allocations and IRS assignments uniformly
randomly in [1,M ∗ L/N ] and [1,M + 1), respectively.
Drawing element allocations from [1, L] causes extremely
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100 2 255 2 367 1

230 1 400 3 188 2

Parent

100 2 255 3 188 2

230 1 400 2 367 1

Children

Fig. 2: Single point crossover

large convergence time when N is large and M/N is small
( 0.1 or smaller).

Fitness function: The data rate for each user is calculated
according to (2). The fitness function returns the value of
the objective function when all the constraints are satisfied,
and returns −∞ when any constraint is violated or any IRS
identifier gets out of range.

Selection: Tournament selection method selects the fittest
chromosome from a set of s randomly chosen chromosomes
where s is an input parameter. Truncation selection method
selects a random chromosome from the fittest s chromosomes
in the population. Tournament and truncation selection meth-
ods work better than other selection methods on the instances
that were tested. Out of these tournament selection performed
better on more instances.
Elitism. Elitism where the fittest solution is always duplicated
in the next generation is used. In the experiments, the algo-
rithm without elitism was usually unable to regenerate the best
solution once it got destroyed.

Crossover: Single Point crossover method for crossover
is used. A random index in the chromosome vector is chosen
and the chromosomes of the parents are spliced at this point.
An example is shown in Fig. 2.

Mutation: For mutation, we use the bit string representa-
tion of the real-coded chromosomes. The bit string is traversed
and the individual bits of the string is are flipped with a given
(small) probability.

Termination: Termination is determined by either con-
vergence or external measures like maximum execution time
or maximum number of iterations.

IV. EXPERIMENTAL RESULTS

This section presents the details of the simulation scenario
and the results. The set-up consisted of 3 IRSes, a base station
and a set of users shown in Figure 3. The users were located in
a room of size 60m X 20m. We simulated two cases: 5 users
and 100 users. In the first case, the users were located at {(0,0),
(15,0), (30,0), (45,0) and (60,0)} and in the second case 100
users were placed uniformly randomly across the room. The
location along the vertical axis was restricted to upto 18m to
avoid too much disparity in SNR. Three IRSes were located at
(0,20), (30, 20) and (60, 20). The base station was located at
(100, 10). We refer to this setting as Scenario A. In Scenario
B, an obstruction is placed at the right wall of the room which
totally blocks the direct base station to user communication.
The algorithm and the simulator were implemented in Julia.
The network and algorithm parameters are listed in Table I and
II. We calculated the input matrix G using the 3GPP pathloss

60 m X 20 m

Blockage

Base station

IRSes

Fig. 3: Simulation scenarios. Scenario A excludes the blockage
shown here.

TABLE I: Network parameters

Parameter Value
Transmit power 10 mW
Carrier frequency 2.4 GHz
Bandwidth 10 MHz
Noise figure 10 dB
No. of IRS 3
No. of IRS elements 10000

model for the Urban Scenario [22]. Further, we ensured that
the reflected power from an IRS did not exceed Ptx/2 [23].

Differential evolution is another population method. We
used its implementation in BlackBoxOptim optimizer [19]
for performance comparison. In particular, we used the
adaptive_de_rand_1_bin method available in the pack-

age. We also report the sum-rate obtained from direct line-
of-sight paths between users and base station (had there been
no obstruction and no IRSes). For Scenario A, the sum-rates
obtained were 514Mbps and 534Mbps for the 5 users case
by the genetic algorithm and BlackBoxOptim, respectively.
The corresponding sum-rates for Scenario B were 503Mbps
and 524Mbps. Direct line-of-sight sum-rate was 151Mbps.
We see that the genetic algorithm and differential evolution
implementation of BlackBoxOptimof achieved very similar
sum-rates.

For the 100 users case, BlackBoxOptim failed and did not
produce a feasible solution. The genetic algorithm obtained
2.909Gbps for Scenario A and 1.056Gbps for Scenario B
while the direct line-of-sight sum-rate was 1.734Gbps. Unlike
the 5 users case where using IRSes improved the sum-rate by
over a factor of 3, in this 100 users the improvement was about
1.5 times, and in Scenario B the IRSes were the bottleneck.

TABLE II: Genetic algorithm parameters

Parameter Value
Population size 100
Selection method Tournament
Selection size 10
Crossover method Single point
Mutation method Random bitwise
Mutation probability 0.25 for 5 users and 0.05 for 100 users
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(a) Elements allocation

(b) Data rate

Fig. 4: 100 users, Scenario A

TABLE III: Performance comparison. GA: Genetic Algorithm,
DE: Differential Evolution, Direct: Non-IRS-aided sum-rate if
direct line-of-sight paths between users and base station were
available

5 users 100 users
Method GA DE Direct GA DE Direct
Scenario A sum-rate (Mbps) 514 534 151 2909 — 1734
Scenario B sum-rate (Mbps) 503 524 151 1056 — 1734
Execution time (s) 1.400 0.06 NA 24 — NA

There were not enough elements per user to compensate for the
additional power loss due to longer path lengths from the users
to the base station. The execution times on Intel Core i5-8250U
CPU with 7.5GB RAM and Ubuntu 18.04 distribution of
Linux OS are summarized in Table III. Figs. 4 and 5 visualize
the results. Figs. 4a and 5a show the user locations and the
number of elements as well as the IRS allocated to each user.
Figs. 4b and 5b show the resulting data rate for each user.
The size of the markers is proportional to the allocation and

(a) Elements allocation

(b) Data rate

Fig. 5: 100 users, Scenario B

the rate in the respective figures. IRS 1, 2 and 3 refer to the
IRSes located at (0,20), (30, 20) and (60, 20), respectively.
Not surprisingly, the optimal solution divides the area into
3 distinct sections where the nearest IRS is assigned to the
users. Further, nodes near IRSes get much larger data rates
and being the closest to the base station, very many nodes
associated with IRS 3 receive large data rates.

Throughput equalization: The large data rate disparity
as a result of sum-rate maximization may not be desirable
for human users. To equalize the throughput, the fitness
function was modified to return negative of the variance of
data rates (P2). The rest of the algorithm and the settings were
kept the same as that for the 100 users sum-rate maximization.
Figs. 6a and 6b show the elements allocation. Fig. 7 shows
the resulting data rates for each user for Scenario B. The
figures for the data rate for the two scenarios were similar.
As compared to the sum rate maximization, convergence for
equalization took significantly longer (15 s). The resulting data
rates were more equitable and the standard deviation of the
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data rates decreased from 2.9× 108 to 1.9× 108 for Scenario
A and from 1.2 × 108 to 4.36 × 106 for Scenario B. The
sum rates after equalization were 1.945Gbps and 39.05Mbps
for Scenarios A and B, respectively. The equalization is less
effective in Scenario A because the data rates on direct source-
destination paths remain the same.

(a) Scenario A. Elements allocation

(b) Scenario B. Elements allocation

Fig. 6: 100 users. Throughput equalization

V. CONCLUSIONS AND FUTURE WORK

This work presented a genetic algorithm for optimizing
IRS element allocation in IRS-aided wireless environments. It
showed that using genetic algorithms is a promising approach
for solving this NP-hard problem. It can help in designing fast
heuristics for IRS element allocation for a given deployment
set-up. Simulations on a set-up consisting of 3 IRSes of
10000 elements each showed that when the ratio of IRS
element count to number of users is large, using IRS can
lead to significant increase in the sum-rate from the baseline
of direct user to base station channel. However, when the
number of users get large, the sum-rate increase using IRS
gets smaller because of decrease in the available number
of elements per user. The algorithm can also be used to

Fig. 7: Rates after throughput equalization.

equalize throughput though the convergence was slower in the
experiments. Interesting future directions are nonorthogonal
medium access and speeding-up the convergence.
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