
Event Reference Synchronization (ERS): An
Event-Based IoT Clock Synchronization

Shashi Prabh
SEAS, Ahmedabad University

Ahmedabad, India
shashi.prabh@ahduni.edu.in

Abstract—This paper addresses clock synchronization in net-
works of wirelessly connected nodes, such as, Internet of Things
(IoT) and Industrial Internet of Things (IIoT) networks. Synchro-
nizing wirelessly networked sensor nodes in large deployments
poses some unique challenges. Though the Precision Time Pro-
tocol (PTP), defined in the IEEE 1588 standard, is becoming
the dominant clock synchronization method, its requirements
of transparent bridges and specialized network interface cards
are at odds with the low-cost devices, whereas, low-cost limited-
capability sensor nodes are a practical necessity in large-scale
deployments. This paper addresses this gap. It presents Event
Reference Synchronization (ERS), an asynchronous low-overhead
clock synchronization method for IoT and IIoT networks con-
sisting of predominantly low-cost devices. ERS is capable of
providing secure time reference service. Evaluation of ERS on a
proof-of-concept testbed was carried out where all its components
were implemented on a low-cost IoT platform. ERS achieved 85
microsecond accuracy despite using software timestamping.

I. INTRODUCTION

Clock accuracy is important in Internet of Things (IoT) as
well as in Industrial IoT (IIoT)1. Networked sensor nodes
in an industrial plant facilitate fault detection, fault predic-
tion and real-time optimization of plant operations. Accurate
timestamping of sensor readings is necessary for making
correct causal inference needed. Some networking protocols
and applications also require clock synchronization. Further,
battery-powered IoT nodes are duty-cycled to conserve energy.
Measurement data on a low-cost device showed that the
accuracy of a 50 % duty-cycled node fell to 470 ppm and
that of a 20 % duty-cycled device fell to 2580 ppm against
the baseline of 45 ppm in 100 % duty-cycled node (Fig. 1).
Since duty-cycled nodes tend to loose accuracy when sleeping,
it is imperative that the nodes be resynchronized after wake
up. An IoT ecosystem can also be distributed across multiple
geographical areas. Therefore, synchronizing clocks to an
unambiguous external time reference such as GMT is needed.

Network Time Protocol (NTP), developed to synchronize
computers connected over the Internet [1], achieves accuracy
usually in the range of 5 ms - 100 ms [2]. Precision Time Pro-
tocol (PTP) was developed to fulfill sub-microsecond accuracy
needed in industrial control applications which NTP could
not meet [3]. Global Navigation Satellite Systems (GNSS)
based clock synchronization can achieve 10 ns accuracy [4] but

1For the sake of brevity, the term IoT is used in this paper to refer to both
IoT and IIoT.

0 200 400 600 800 1000

Time (s)

0 0

200 200

400 400

600 600

800 800

1000 1000

1200 1200

A
b

so
lu

te
o
ff

se
t

(m
s)

100 % duty cycle

50 % duty cycle

20 % duty cycle

Fig. 1: Accuracy without clock synchronization in duty-cycled
nodes. The offset grows fast in the absence of clock synchro-
nization.

putting GPS receiver on every device is not practical. Besides
cost, receiving the signal from the satellites requires line of
sight visibility which is a limitation for indoor deployments.
PTP fills this gap and is gaining wider acceptance. However,
achieving the stated accuracy using PTP requires specialized
hardware and transparent bridges which would be unreason-
able to expect from the low-cost IoT devices and also large-
scale deployments, e.g., on factory floors. A more practical
approach taken in this work, is to use available high accuracy
clock synchronization (e.g., PTP) in a few of the nodes to
synchronize their clocks to an external time source, and use a
lightweight clock synchronization protocol to synchronize the
rest of the clocks with the externally synchronized ones.

This paper presents Event Reference Synchronization
(ERS), a clock synchronization protocol that leverages the
broadcast nature of wireless transmissions. Though several
broadcast-based clock synchronization algorithms have been
proposed in the literature (see Section II for a review), the
novelty of ERS is that each clock synchronization has the
overhead of only one broadcast message and this message can
synchronize all the nodes in the transmitter’s neighborhood.
Further, ERS is asynchronous, that is, the interval between
an event and the related clock synchronization broadcast is

1



not constrained. A proof-of-concept implementation of ERS
involving a testbed of low-cost (approx. $7) ESP32 develop-
ment boards was done. Measurement data show that ERS
can achieve 85µs accuracy on these low-cost devices over an
IEEE 802.11 WLAN and using software timestamping. This
accuracy is one order of magnitude better than the achievable
accuracy of NTP over an IEEE 802.11 WLAN [5]. ERS
exceeds the 1 ms accuracy requirement for event sequencing in
IIoT applications [5], [6]. Further, the demonstrated accuracy
level of ERS meets the requirements of several other industrial
applications [7].

The rest of this paper is organized as follows: A discussion
of related work is presented in Sec. II. A background on clock
synchronization is presented in Sec. III followed by the details
of ERS in Sec. IV. A proof-of-concept ERS implementation
design, details ad data are presented in Sec. V. Sec. VI presents
the conclusion.

II. RELATED WORK

Algorithmic studies of using broadcast for clock synchro-
nization dates back to eighties [8], [9]. Several broadcast-
based synchronization protocols have also been proposed in
the literature [10]–[14]. Reference Broadcast Synchronization
(RBS) [10] was primarily designed for internal clock synchro-
nization in wireless sensor networks, although with overheads
it can be extended for external clock synchronization. In
RBS some node sends physical layer broadcasts to neighbors.
Neighbors record the system clock time when they receive the
broadcast which they then exchange with their own neighbors.
This allows the nodes to compute the offset and drift rate
of their neighbors. This information is then used to convert
local event timestamps to the receiver’s time at the time of
transmitting them to the neighbors. RBS suffers from high
message exchange overhead since one clock synchronization
entails O(k) message exchanges where k is the number
of neighboring nodes. In contrast, one broadcast message
synchronizes all the clocks in a neighborhood in ERS. The
authors reported the precision of RBS as 29.61µs for the
99th percentile under negligible traffic load and 48.61µs for
the 99th percentile at a traffic load of 6.5 Mbps. However,
a subsequent work reported the precision of RBS between a
pair of nodes to be 93µs [15]. In a theoretical work, Noh
et al. build upon RBS where nodes synchronize by listening
to the message exchanges among neighbors [11]. Cheng et
al. [13] further improved the work of Noh et al. by reducing
the message exchanges. Ren et al. developed a mechanism to
use periodic beacon broadcasts to emulate a PLL algorithm
on sensor nodes [12].

Timing-Sync Protocol for Sensor Networks (TPSN), also
developed for wireless sensor networks, uses two-way message
exchange discussed in Sec. III. A level discovery procedure
arranges clocks in a tree hierarchy where all the clocks are
synchronized to a root clock. Using timestamping at Medium
Access Control (MAC) layer, TPSN achieved precision of 45.2
µs over 1 hop and 73.6 µs over 5 hops [15]. Flooding Time
Synchronization Protocol (FTSP) establishes a tree hierarchy

in a wireless sensor network where flooding originating from
the root is used to synchronize the nodes [16].

Several clock synchronization protocols based on PTP’s
sync and follow_up message sequence (Sec. III) have been
reported. Mahmood et al. present clock synchronization ap-
proach based on this idea [17]. They implemented the system
on off-the-shelf Access Point (AP) and WLAN cards. The
AP sends these messages and the stations estimate one-way
delay using delay_req and delay_resp messages. Their
system achieved an accuracy of 23.6µs when using dedicated
packets for sending sync and follow_up and an accuracy
of 37.4 ms when using beacons for the same. Reference
Broadcast Infrastructure Synchronization (RBIS) is another
work that also emulates the PTP’s sync and follow_up

message sequence [14] and has been tested on general purpose
desktop. RBIS is based on master-slave paradigm and relies
on two WiFi APs operating in infrastructure mode, one of
which is synchronized using PTP. One AP sends the sync

message and the other sends follow_up message. These
messages are locked in frequency to avoid ambiguity and due
to this fact, scaling RBIS to large networks with multiple
APs seems difficult. Another clock synchronization protocol
in this category but for IoT mesh networks is Mesh Time-
synchronization Protocol (MTP) [18]. In MTP, the gateway is
synchronized to external time reference which then broadcasts
the timing to the other nodes in the mesh. Measurement data
on a hardware implementation of MTP showed its accuracy
to be in 0.5-3.2 ms range for various settings.

Mani et al. present a clock synchronization system, called
SPoT, for IoT where a lightweight client synchronizes local
clock to a reference server [19]. SPoT was shown to offer
an accuracy improvement of one order of magnitude over
SNTP [20] and (17 times) and MQ Telemetry Transport,
MQTT [21] (22 times). The 15 ms accuracy achieved by SPoT,
however, is two orders of magnitude lower than the accuracy of
the proposed ERS. A comparison of the clock synchronization
systems discussed here is presented in Table I. Extensive list
of clock synchronization literature can be found in survey
papers [22] and [23].

TABLE I: A comparison of clock synchronization protocols

Message
protocol

Accuracy

NTP two-way 5 - 100 ms, software timestamping
PTP two-way 10 - 100µs, software timestamp-

ing. ns, hardware timestamping
ERS broadcast 85µs, software timestamping
RBS [10] broadcast

+ unicast
48.61µs (93µs [15]), hardware
timestamping

TPSN [15] two-way 45.2 µs, hardware timestamping
FTSP [16] flooding 1.48 µs, hardware timestamping
PTP-
based [17]

two-way 23.6µs

RBIS [14] synchronous
broadcast

3.3µs, software timestamping, im-
plemented on general purpose PC

MTP [18] two-way 0.5-3.2 ms, hardware timestamping
SPoT [19] two-way 15 ms, timestamping not specified

2



S M

t1

t2
t3

t4

< t2, t3
>

(A)

S M

t1

t2
t3

t4

< t2 >

< t3 >

(B)

Fig. 2: Synchronization message exchanges

III. BACKGROUND

If the delay between the sending and receiving a times-
tamp can be known accurately then clock synchronization is
straightforward. Consider synchronizing clock at node S to
the clock at node M . Let M send a synchronization message
at time tM for which the receiving timestamp generated at
S is tS . If the delay between the generation of tM and tS
(according to M ’s clock) is ∆, then the offset at the receiving
clock is tM − tS + ∆. This one-way time transfer is used
in GPS receivers. Since one-way delay is usually unknown, a
commonly used method involves two-way message approach
where the one-way delay is estimated using message ex-
changes between master and slave clocks in both directions as
shown in Figure 2-A. Let the timestamp of the synchronization
request message at the sender be t1 and that at the receiver
be t2. Further, let the sending and receiving timestamps of the
response message be t3 and t4. We assume that the offset
remains the same during the process. We use δ to denote
the offset, and ∆req and ∆rsp to denote the delays incurred
by the request and response messages, respectively. The four
timestamps are related as follows:

t2 = t1 + δ + ∆req (1)
t4 = t3 − δ + ∆rsp. (2)

Here we get a system of two equations with three unknowns –
we can only find out the round-trip delay from these messages
but not the one-way delay. Solving for the offset we get:

δ =
t2 + t3 − t1 − t4

2
+

∆rsp −∆req

2
. (3)

Thus, the accuracy of the estimation of δ depends on the
delay asymmetry |∆rsp − ∆req|. Synchronization protocols,
including the one proposed in this paper, try to minimize the
error in the estimation of δ.

Operating system delays, interrupts, medium access delays,
asymmetric routes and queuing delays at switches and routers
are main sources of delay asymmetry. The impact of the
first three can be eliminated by hardware timestamping where
recording the timestamp is delayed until the MAC layer passes

1. Event packet 

2. Time packet 

2. Time packet 

Ordinary Node

Time Reference Node

C

A

B

D

APExt. clock

reference

Fig. 3: ERS message sequence at node C. 1. A nearby
node (A or the nearby AP) transmits an event packet E.
2. Nodes B and C record the receiving timestamp and the
fingerprint identifying E. 3. TRB B broadcasts E’s timestamp
and fingerprint. 4. Node C computes the offset by comparing
the two timestamps.

the message to the physical layer. On the receiving side, the
timestamp is also recorded when the message is passed on to
the MAC layer. The sending timestamp is then sent in a third
message as shown in Fig. 2-B [3], [24].

IV. EVENT REFERENCE SYNCHRONIZATION

Event Reference Synchronization (ERS) relies on the broad-
cast nature of wireless transmissions to accomplish clock
synchronization. In ERS two kinds of nodes are defined:
ordinary nodes and Time Reference Broadcaster (TRB) nodes.
TRBs are synchronized to an external time source and clocks
in ordinary nodes synchronize to TRB clocks. ERS uses
transmissions of data and control packets, which we call
event packets, as time markers. These event packets are
heard by ordinary nodes as well as TRB nodes. Though
the payload might be encrypted, headers in an event packet
are sent in clear. A header contains sufficient information to
uniquely identify a particular event packet. The nodes wishing
to synchronize their clocks record the timestamp of event
packets and cache the timestamp and the unique fingerprint
identifying the associated event packet. When a TRB hears an
event packet, it also does the same at first and subsequently
broadcasts a packet containing the timestamp and fingerprint
pair. These broadcasts are referred to as time packets. Ordinary
nodes use the cached system timestamp associated with event
packet and the corresponding reference timestamp contained
in the time packet to perform clock synchronization (Fig. 3).

Suppose the system timestamp associated with a particular
event packet E at node i is ti(E) and the timestamp associated
with the same event packet at a TRB is tr(E). Let ∆ denote
the delay between receiving the event packet and generation of
the local timestamp. Lastly, let dsi and dsr denote the distances
from the node that generated E to the nodes i and TRB,

3



respectively. Thus, the offset at node i for the event packet
E is

(ti(E)−∆i(E) + dsi/c)− (tr(E)−∆r(E) + dsr/c)

= ti(E)− tr(E) + (∆r(E)−∆i(E)) + (dsi − dsr)/c,

where c denotes the speed of light. Using MAC layer times-
tamping the effect of non-deterministic OS delays can be
eliminated, making ∆r(E) u ∆i(E). Note that the offset
is insensitive to non-deterministic medium access delay. The
offset then becomes:

u ti(E)− tr(E) + (dsi − dsr)/c.

If the locations of the nodes are known, the contribution
(dsi− dsr)/c due to propagation delay asymmetry can be ex-
plicitly factored-in. However, the contribution due to distance
asymmetry is negligible in practice due to the limitations on
the range of IoT nodes and the extant of network deployment
which is typically few tens of meters. Clearly, (dsi − dsr)/c
is upper bounded by min(R,D)/c where R is the maximum
range of an individual node and D is the diameter of the net-
work. Large-scale deployments are multi-hop where R would
likely be the limiting factor. For example, in deployments with
a maximum range of 30 m, the maximum propagation delay
asymmetry is 0.1µs, well within the accuracy objective of
this protocol. Consequently, the offset can be approximated
by ti(E)− tr(E) if the distances are not known.

Several TRBs can be in the proximity of a given node.
This can be advantageous because a node that gets multiple
time packets for the same event can use the more robust
average offset. Further, in multi-hop networks an event packet
can generate several time reference messages as the original
packet gets forwarded through the network. Since the event
packets’ header signature will change each time the packet is
forwarded, the time reference from a previous hop will not
match and cause ambiguity. In a prototype implementation
using IEEE 802.11 which is discussed below, periodic beacons
from the same AP are used to synchronize nodes. Since the
MAC header signature changes from beacon to beacon, no
ambiguity results.

The previous PTP-like approaches in the literature differ in
details but the fundamental principle remains the same – the
broadcast message or a synchronous follow-up message, as in
PTP, provides the time reference(e.g., [14], [17]). ERS differs
from these PTP-like approaches in that the time reference is
sent asynchronously. Since an event is used as time marker by
both ordinary node and TRBs, the need for one-way delay
estimation is eliminated, which would not have been the
case where the only broadcasts were TRB’s time reference
broadcasts. Unlike RBS and its derivatives, ERS provides
external clock synchronization natively. Further, the frequency
correction approaches used in NTP, PTP, RBS and other
systems cited earlier can also be used in ERS for syntonization.

V. IMPLEMENTATION

A. Design

In the proof-of-concept implementation ESPRESSIF Sys-
tem’s ESP32-WROOM-32D development boards were used.
IEEE 802.11, commonly used in IIoT deployments, was used
for networking. Time packets were broadcasted as modified
IEEE 802.11 beacon frames which are referred below as
time beacons. The frame format of all the IEEE 802.11 data
frames has a 30 Byte MAC header and a 4 Byte Frame Check
Sequence (FCS) shown in Fig. 4. If the FromDS bits in the
frame control field is not set, Addr2 contains the source
MAC address. Otherwise, it contains either Basic Service Set
Identifier (BSSID) or transmitting AP’s MAC address. The
frame format of all IEEE 802.11 management frames has a
24 Byte MAC header and a 4 Byte FCS shown in Fig. 5.
The fields DA and SA contain the MAC addresses of the
destination and the source, respectively. The Frame control,
Addr2 or SA, Sequence control and FCS fields together are
used as event packet fingerprint, though further optimization
of fingerprint size is possible.

TRB sends this fingerprint of an event packet along-with
the associated reference timestamp as an Information Ele-
ment (IE). Depending on the type of management frame, the
Frame Body contains a set of IEs. The format of an IE is a
1 Byte Element ID field, followed by a 1 Byte Length field
containing the value of the size of the rest of the information
element in Bytes, followed by one or more fields defined for
the particular information element (Fig. 6). Beacons contain
the Service Set Identifier (SSID) IE which has Element ID

defined to be 0 and the Length could be up-to 32 followed
by up-to 32 characters long human-readable SSID name. SSID
name in time beacon was configured to _TIME_. We note that
the same SSID in different TRBs can be used since its purpose
is only to recognize a time packet.

In the IEEE 802.11 standard, a number of information
Element IDs are either not used or left for vendors’ use.
Some of these defined in the standard are 17-31, 128-129,
133-136 and 143-173 [25]. In time packets (beacons), after
the SSID IE with the name _TIME_, a Time Reference IE
is added. This IE contains the event packet fingerprint and
reference timestamp (Fig. 7). We assigned 25 as Element ID,
14 Byte for fingerprint followed by 8 Byte reference timestamp
(in POSIX timestamp format: 4 Byte second field and 4 Byte
microsecond field).

Though security is not the focus of the work presented in
this paper, it should be noted that the design of ERS admits
secure synchronization natively. For secure synchronization,
TRB can add another Security IE that contains the 22 Byte
data of Time Reference IE encrypted by its private key. This,
however, would require the availability of key distribution
service. The nodes that require secure synchronization can
use the encrypted IE while other nodes can still use the
unencrypted Time Reference IE.

4



 Frame        Duration    Addr1    Addr2   Addr3    Sequence        Addr4          Frame                FCS
Control                                                                  Control                               Body  

Bytes              2              2               6          6            6                 2               6          0 - 2312                 4 

 

Fig. 4: Generic IEEE 802.11 data frame format.

 Frame        Duration           DA               SA             BSSID     Sequence           Frame              FCS 
Control                                                                                    Control              Body  

Bytes            2                 2                 6                  6                 6                 2               0 - 2312              4 

Fig. 5: Generic IEEE 802.11 management frame format.

Element ID       Length          
                                                
                             L                

Bytes           1                  1                                           L                    

Fig. 6: IEEE 802.11 information element (IE) format.

Element ID  Length   Frame      SA     Sequence    FCS     Reference
                                 Control               Control                 Timestamp  

Bytes         1             1          2           6             2             4              8  

25           22
Event Packet Signature

Fig. 7: IE contained in a time beacon.

B. Details

The ESP32-WROOM-32D module has a dual-core 32-bit
ESP32-D0WD microcontroller unit, 4 MB external flash mem-
ory along-with IEEE 802.11b/g/n, Bluetooth and Bluetooth
Low Energy (BLE) modules [26]. It runs on FreeRTOS which
is a real-time operating system [27]. Networking is handled by
a FreeRTOS task running Lightweight TCP/IP protocol stack.
In the default setting, one of the cores handles networking
and the other is left for applications. There is support for two
low energy sleep modes, called, “light sleep mode” and “deep
sleep mode” [28]. In the light sleep mode, CPU, RAM and

Callback function

Event Task 802.11 Driver Task

Clock Sync Task

Se
nd

 t
im

e 
re

fe
re

nc
e 

br
oa

dc
as

t 
(T

R
B)

Promiscuous 
mode callback

Enqueue packets

Application

Events

Events

Fig. 8: Block diagram of the implementation.

peripherals are clock-gated, where as in the deep sleep mode,
these are not powered at all. In the deep sleep mode, the Real
Time Clock (RTC) controller and a low power coprocessor
remain functional. However, when the light sleep mode was
used, the heap contents were getting corrupted upon waking
up.

The block diagram of the implementation is shown in Fig. 8.
In the normal mode the 802.11 driver sends events to an event
task loop which is then handled by application using callback
functions. However, in promiscuous mode, the driver task
directly calls the registered callback function for the packets
that match the filtering criteria. In our tests, the hardware
timestamp on ESP was found to be unreliable. Therefore
the timestamp of event messages is recorded in the callback
function. In addition to the RTC timer that uses 32.768 kHz
oscillator, ESP32 also has a high accuracy timer that derives
time from an 80 MHz clock source [28]. Measurement of the
frequency stability of both the RTC and the high-resolution
timer gave a difference of 7.52 ppm. However, since the high-
resolution timer is not available in the sleep modes, RTC was
used in the measurements. Upon recording the timestamp, the
callback function enqueues the packet to be processed by the
Clock Synchronization Task (CST). The functionality of CST
differs on ordinary nodes and TRBs. In ordinary nodes, CST
matches the event packet signature sent in time beacons to that
stored at the node. Upon a match, it computes the offset and
sets the system clock. In TRBs, CST forms (raw) time beacon
frame and calls the 802.11 driver API for its transmission.

C. Measurement Data

The measurement setup consisted of four ESPRESSIF
ESP32-WROOM-32 boards. Three ESP32 boards were used
as ordinary nodes and one ESP32 board was used as the TRB.
The entire TRB functionality was implemented on the ESP32
board. Beacons from APs located in neighboring buildings
were used as event packets. A TPLINK Access Point (AP)
running on Atheros QCA9533 SoC in our control served as
the external time source to the TRB node. The beacon interval
of this AP was kept at the default 102.4 ms. The TRB was
caching 10 event packets and associated timestamps at a time
and then was broacasting the time packets for each of these in
an infinite loop. Logs from the ESP32 nodes were sent through
UART (Universal Asynchronous Receiver-Transmitter) to a

5



−400 −200 0 200 400 600

Offset (µs)

0.0000

0.0025

0.0050

0.0075

0.0100
F
re

q
u

e
n

cy
Continuous

Period = 1 s

Period = 10 s

0 50 100 150 200 250 300

Time (s)

10−3 10−3

10−1 10−1

A
b

s.
o
ff

se
t

(m
s)

Continuous

Period = 1 s

Period = 10 s

Fig. 9: Accuracy of ERS as a function of synchronization
frequency.

laptop. All the beacons sent by the TPLINK AP that the
nodes received (along-with the 8 Byte beacon timestamp that
is sent in the Frame body of 802.11 beacon frames) and the
associated local timestamp were sent by all the nodes over
UART for analysis.

The accuracy of ERS as a function of clock synchronization
interval is presented in Fig. 9. Data was collected for continu-
ous synchronization and for synchronization periods 1 s, 10 s
and 30 s. The number of samples was 4500 for the continuous
synchronization and approx. 5000 for the other cases. Synchro-
nization was triggered using a high priority periodic task and
once the offset was adjusted, no further clock synchronization
was done until the next trigger. In the case of continuous
synchronization, CST initiated next synchronization round as
soon as the system clock was set. The average accuracy for
continuous synchronization was 84.649µs and the precision
was 67.018µs. The measurement data are summarized in
Table II. The continuous synchronization mode data is skewed
towards negative offset due to fast clock rate.

The relative error was measured by comparing the system
timestamps on a pair of ordinary nodes. The beacons sent by
the TPLINK AP were filtered (in) and the system timestamp
offset for the same beacon frames were computed. The data
are shown in Fig. 10. The mean error was 110.03µs (95% CI
107.64-112.43µs).

These results show that ERS achieves sub-millisecond
accuracy with software timestamping, low synchronization
frequency and the implementation of the TRB functionality
on a low-cost limited-capability device. This accuracy meets
the requirements of general IoT applications, causal inferenc-
ing of events [29] and monitoring applications in industrial
settings [7]. In the following evaluations, the synchronization
period was set to 5 s. This setting appears to offer a good
balance between accuracy and clock synchronization overhead.

−400 −300 −200 −100 0 100 200 300

Offset (µs)

0.000

0.002

0.004

0.006

F
re

q
u

e
n

cy

Continuous

0 100 200 300 400 500

Time (s)

10−4 10−4

10−3 10−3

10−2 10−2

10−1 10−1

A
b

s.
o
ff

se
t

(m
s)

Fig. 10: Relative error between a pair of synchronized nodes.

TABLE II: Accuracy vs. Synchronization period

Synchronization interval Accuracy 95 % CI
Continuous 84.65µs 82.67 - 86.61µs

1 s 125.53 µs 123.17 - 127.90µs
10 s 286.04 µs 281.47 - 290.61µs
30 s 590.60 µs 580.49 - 600.90µs

Accuracy in duty-cycled nodes

One of the main challenges of clock synchronization in IoT
is duty-cycling for energy saving since the system time in
sleep modes is usually maintained by low frequency crystal
oscillators. The performance of ERS on duty-cycled nodes was
measured where the duty-cycling settings were kept as 100 %,
50 % (50 s active period followed by 50 s sleep) and 20 % (20 s
active period followed by 80 s sleep). As mentioned earlier,
the synchronization period was kept at 5 s during the active
period. The clocks were free-running during the sleep period.

0 200 400 600 800 1000

Time (s)

10−4 10−4

10−3 10−3

10−2 10−2

10−1 10−1

100 100

101 101

102 102

103 103

A
b

so
lu

te
o
ff

se
t

(m
s)

100 % duty cycle

50 % duty cycle

20 % duty cycle

Fig. 11: Accuracy in duty-cycled nodes

6



Fig. 11 shows the measurement data. Synchronization period
of 5 s was sufficient to maintain sub-millisecond accuracy
during the active periods. The average accuracy during active
period was 217.5 µs (95 % CI 213.1-221.9µs). During the
sleep period, the average accuracy dropped to 462 ms which
again improved to sub-millisecond range upon receiving the
time beacons during the active period. This post-wakeup but
pre-synchronization clock values appear as the outliers (points
near the top) in the figure.

VI. CONCLUSION

ERS provides external clock synchronization for low-cost
devices in IoT and IIoT networks. It provides better accuracy
than NTP and complements the PTP standard by extending
its coverage to capability-limited nodes. In ERS, the event
messages that are markers of time, and the time reference mes-
sages that contain reference time, both are broadcast messages.
Therefore, a single time reference broadcast synchronizes
all the neighboring nodes that also received the associated
event message. This is in contrast with other broadcast-based
algorithms discussed earlier, such as RBS and its derivatives,
where broadcast is used to eliminate non-deterministic delays
but unicast is still used to infer the clock offset. ERS does away
with the unicast altogether. Further, being asynchronous ERS
can be implemented on low-end devices. Message filtering and
various other optimizations on TRB as well as ordinary nodes
to further improve the scalability of ERS are interesting future
directions.

ACKNOWLEDGMENT

This work was supported by Ahmedabad University grant
number URBSEASE20A6/SUG/20-21/03-SP-08.23.

REFERENCES

[1] D. L. Mills, “Internet time synchronization: the network time protocol,”
IEEE Transactions on communications, vol. 39, no. 10, pp. 1482–1493,
1991.

[2] http://www.ntp.org/ntpfaq/NTP-s-algo.htm, Retrieved Jan 2021.
[3] “IEEE standard for a precision clock synchronization protocol for

networked measurement and control systems,” IEEE Std 1588-2008
(Revision of IEEE Std 1588-2002), pp. 1–300, 2008.

[4] D. W. Allan and M. A. Weiss, “Accurate time and frequency transfer
during common-view of a GPS satellite,” in 34th Annual Frequency
Control Symposium. IEEE, 1980, pp. 334–346.

[5] D. Anand, D. Sharma, Y. Li-Baboud, and J. Moyne, “EDA performance
and clock synchronization over a wireless network: Analysis, experimen-
tation and application to semiconductor manufacturing.” ISPCS 2009
International IEEE Symposium on Precision Clock Synchronization for
Measurement, Control and Communication, 2009.

[6] G. S. Antonova et al., “Standard profile for use of ieee std 1588-
2008 precision time protocol (ptp) in power system applications: Ieee
pes psrc working group h7/sub c7 members and guests,” in 2012
IEEE International Symposium on Precision Clock Synchronization for
Measurement, Control and Communication Proceedings, 2012, pp. 1–6.

[7] “IEEE Standard Profile for Use of IEEE 1588 Precision Time Protocol
in Power System Applications,” IEEE Std C37.238-2017 (Revision of
IEEE Std C37.238-2011), pp. 1–42, June 2017.

[8] J. Y. Halpern, B. Simons, R. Strong, and D. Dolev, “Fault-tolerant
clock synchronization,” in Proceedings of the Third Annual ACM
Symposium on Principles of Distributed Computing, ser. PODC ’84.
New York, NY, USA: Association for Computing Machinery, 1984, p.
89102. [Online]. Available: https://doi.org/10.1145/800222.806739

[9] J. Welch and N. Lynch, “A new fault-tolerant algorithm for clock
synchronization,” Information and Computation, vol. 77, no. 1, pp. 1
– 36, 1988.

[10] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time
synchronization using reference broadcasts,” SIGOPS Oper. Syst.
Rev., vol. 36, no. SI, p. 147163, Dec 2002. [Online]. Available:
https://doi.org/10.1145/844128.844143

[11] K. Noh, E. Serpedin, and K. Qaraqe, “A new approach for time
synchronization in wireless sensor networks: Pairwise broadcast syn-
chronization,” IEEE Transactions on Wireless Communications, vol. 7,
no. 9, pp. 3318–3322, Sep. 2008.

[12] F. Ren, C. Lin, and F. Liu, “Self-correcting time synchronization
using reference broadcast in wireless sensor network,” IEEE Wireless
Communications, vol. 15, no. 4, pp. 79–85, Aug 2008.

[13] K. Cheng, K. Lui, Y. Wu, and V. Tam, “A distributed multihop time
synchronization protocol for wireless sensor networks using pairwise
broadcast synchronization,” IEEE Transactions on Wireless Communi-
cations, vol. 8, no. 4, pp. 1764–1772, April 2009.

[14] G. Cena, S. Scanzio, A. Valenzano, and C. Zunino, “Implementation
and evaluation of the reference broadcast infrastructure synchronization
protocol,” IEEE Transactions on Industrial Informatics, vol. 11, no. 3,
pp. 801–811, June 2015.

[15] S. Ganeriwal, R. Kumar, and M. Srivastava, “Timing-sync protocol for
sensor networks,” in Proceedings of the 1st International Conference on
Embedded Networked Sensor Systems, ser. SenSys ’03. New York, NY,
USA: Association for Computing Machinery, 2003, p. 138149.

[16] M. Maróti, B. Kusy, G. Simon, and A. Lédeczi, “The flooding time
synchronization protocol,” in Proceedings of the 2nd International
Conference on Embedded Networked Sensor Systems, ser. SenSys ’04.
New York, NY, USA: Association for Computing Machinery, 2004, p.
3949. [Online]. Available: https://doi.org/10.1145/1031495.1031501

[17] A. Mahmood, G. Gaderer, and P. Loschmidt, “Software support for
clock synchronization over IEEE 802.11 wireless LAN with open source
drivers,” in 2010 IEEE International Symposium on Precision Clock
Synchronization for Measurement, Control and Communication, Sep.
2010, pp. 61–66.

[18] T. Beke, E. Dijk, T. Ozcelebi, and R. Verhoeven, “Time synchronization
in IoT mesh networks,” in 2020 International Symposium on Networks,
Computers and Communications (ISNCC), Oct 2020, pp. 1–8.

[19] S. Mani, R. Durairajan, P. Barford, and J. Sommers, “An architecture
for iot clock synchronization,” in Proceedings of the 8th International
Conference on the Internet of Things, ser. IOT ’18. New York, NY,
USA: Association for Computing Machinery, 2018. [Online]. Available:
https://doi.org/10.1145/3277593.3277606

[20] D. Mills, “Simple network time protocol (SNTP) Version 4 for IPv4,
IPv6 and OSI,” Internet Engineering Task Force, RFC 4330, Jan 2006.

[21] A. Banks, E. Briggs, K. Borgendale, and R. Gupta, “MQTT Version
5.0,” OASIS Standard, Tech. Rep., 2019.

[22] M. Lvesque and D. Tipper, “A survey of clock synchronization over
packet-switched networks,” IEEE Communications Surveys Tutorials,
vol. 18, no. 4, pp. 2926–2947, Fourthquarter 2016.

[23] A. Mahmood, R. Exel, H. Trsek, and T. Sauter, “Clock synchronization
over IEEE 802.11 - A survey of methodologies and protocols,” IEEE
Transactions on Industrial Informatics, vol. 13, no. 2, pp. 907–922, April
2017.

[24] J. C. Eidson, Measurement, control, and communication using IEEE
1588. Springer Science & Business Media, 2006.

[25] “IEEE Standard for Information technology–Telecommunications and
information exchange between systems Local and metropolitan area
networks–Specific requirements Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications,” IEEE Std
802.11-2012 (Revision of IEEE Std 802.11-2007), pp. 1–2793, March
2012.

[26] “ESP32-WROOM-32D and ESP32-WROOM-32D data sheet,” Espressif
Systems, Tech. Rep. 2.1, 2021.

[27] “FreeRTOS.” [Online]. Available: https://www.freertos.org/
[28] “ESP32 technical reference manual,” Espressif Systems, Tech. Rep.

Version 4.3, 2020.
[29] D. M. Anand, J. G. Fletcher, Y. Li-Baboud, J. Amelot, and J. Moyne,

“Using clock accuracy to guide model synthesis in distributed systems:
An application in power grid control,” in 2010 IEEE International Sym-
posium on Precision Clock Synchronization for Measurement, Control
and Communication, Sep. 2010, pp. 7–12.

7


