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Abstract

Wireless sensor networks are normally characterized by resource
challenged nodes. Since communication costs the most in terms of
energy in these networks, minimizing this overhead is important. We
consider minimum length node scheduling in regular multi-hop wireless
sensor networks. We present collision-free decentralized scheduling
algorithms based on TDMA with spatial reuse that do not use mes-
sage passing, this saving communication overhead. We develop the
algorithms using graph-based k-hop interference model and show that
the schedule complexity in regular networks is independent of the num-
ber of nodes and varies quadratically with k which is typically a very
small number. We follow it by characterizing feasibility regions in the
SINR parameter space where the constant complexity continues to hold
while simultaneously satisfying the SINR criteria. Using simulation, we
evaluate the efficiency of our solution on random network deployments.

1 Introduction

We consider the problem of deterministic collision-free channel access in
regular Wireless Sensor Networks (WSN). WSNs typically consist of resource
challenged nodes where minimizing the communication overhead is important.
In pure TDMA, only one node can transmit at a time. However, in wireless
networks deployed over large enough geographical areas, multiple transmis-
sions can take place in a single time slot due to fading. This scheduling
method is referred to as TDMA with spatial reuse, or, STDMA [18]. In
this paper, we propose a STDMA-based scheduling method without message
passing that satisfies the SINR criteria (defined below) at all receivers.

We (a) show that schedule complexity in hexagonal and square-grid net-
works in graph-based k-hop interference model (defined below) is independent
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of n and is quadratic in k, and (b) specify feasibility regions in the SINR
parameter space where the constant complexity continues to hold in the SINR
model. In the SINR analysis, k, which determines the schedule, becomes a
free parameter. It has been pointed out that analysis of regular topology
networks are useful since, for general networks, the analytical outcome is
limited to asymptotics and order computations. On the other hand, analysis
of regular networks gives expressions for leading coefficient besides the scaling
law and sheds light on the asymptotics of general topology analysis [15]. The
analysis developed in this paper is exact.

In the primary interference model, transmissions between node pairs
(s, t) and (u, v) can not take place simultaneously if {s, t} ∩ {u, v} 6= φ. In
practice, successful reception depends on the exclusion of a larger set of links
from transmitting simultaneously than just those specified by the primary
interference model. More accurate graph-based interference models also
exclude the nodes that fall within certain proximity of a link from transmitting
simultaneously. In the k-hop interference model, which is used in this work,
the minimum separation between a receiver and simultaneous transmitters
is required to be k hops. Hajek and Sasaki showed that the complexity of
finding the minimum length schedule is strongly polynomial under primary
interference model [6]. However, the minimum length scheduling problem
has been shown to be intractable in general graph-based interference models
(k > 1) [26, 24]. In this work, we present constant complexity algorithms
that achieve approximation ratio of 4/3 for hexagonal networks and 5/4 for
square-grid networks. Our algorithm for square-grid networks is optimal for
odd k.

SINR is a more accurate model for successful packet reception than the
graph-based models. Let Pi denote the transmit power of node i, Gij denote
the channel gain between nodes i and j, ηr denote noise at node r and V
denote the set of all nodes. In the SINR model, transmissions from s to r
are successful if:

SINRsr ,
Signal

Interference + Noise

=
PsGsr∑

i 6=s;i∈V PiGir + ηr
≥ β. (1)

A commonly used channel gain model is a polynomially decaying one with
the Euclidean distance, Gsr = d(s, r)−γ , where d(i, j) is the distance between
nodes i and j, and γ is the path-loss exponent.1 Thus, whether a given

1The value of the path-loss exponent, usually between 2 (free space) and 6, depends on
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pair of nodes may be able to communicate with each other depends on all
other transmitters that are active simultaneously. The notion of connectivity
becomes dynamic, and as a result, some of the algorithmic conveniences
offered by the graph-based models do not exist anymore [19, 10].

In this paper, we develop k-hop interference model based near throughput-
optimal scheduling algorithms and subsequently derive conditions on the
SINR parameters in order to satisfy the SINR criteria at every receiver.
Schedule complexity refers to the shortest schedule length that satisfies
the traffic demands. The tightest bound on collision-free SINR schedule
complexity obtained so far is IinO(log2 n), where Iin ∈ Ω(log n) is a measure
of interference and n is the number of nodes [16]. The quantity Iin can be
as large as n making this bound trivial. Using our scheduling method gives
SINR schedule complexity independent of n.

In this paper, we make the following contributions: we present collision-
free distributed scheduling algorithms for node scheduling problems in multi-
hop hexagonal and square-grid networks. In the k-hop interference model,
these algorithms achieve approximation ratios of 3/4 and 5/4 for hexagonal
and square-grid networks, respectively. The scheduling is done based on
logical address of nodes and does not use message passing. We show that
the schedule complexity depends on k but not on the number of nodes in
the network. We establish feasibility regions where the SINR criteria is also
satisfied, thereby establishing constant (in n) SINR schedule complexity
within these feasible regions. We evaluate our work using simulations.

The rest of this paper is organized as follows: we present model and
problem formulation in Section 2, followed by distributed node scheduling
algorithms and schedule complexity analysis in Section 3. We consider SINR
scheduling in Section 4. We present simulation results in Section 5. We
present related work in Section 6 and conclude the paper with Section 7.

2 Preliminaries and Model

We consider two kinds of regular networks, viz., hexagonal and square-
grid. Some authors use the term “regular wireless networks” to refer to a
stricter assumption of the regularity of node placement, where the euclidean
distance between neighboring nodes is a constant, and of the regularity of
connectivity, where each node is connected to a constant (6 and 4 resp.)
number of neighbors [15]. In this paper, we assume regularity with respect to

the physical environment [22]. For typical sensor network deployments, γ has been found
to be around 3 – 4.
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connectivity only (Figure 1(a)). In the following, we use figures showing the
lattice representations (Figure 1(b)–1(c)) for the convenience of presentation
only.

(a) Hexagonal networks:
physical representation

(b) Hexagonal networks:
lattice representation

(c) Square-grid net-
works: lattice repre-
sentation

Figure 1: Physical and logical representations

The coordinates of nodes in lattice representations are convenient for
addressing. In the case of hexagonal lattice, a few coordinate systems have
been used in the literature. In this paper, we choose two diagonals oriented
at an angle of 2π/3 as the X and Y axes (Figure 2(a)). The corresponding
addressing is shown in Figure 2(b). We refer to the six regions enclosed by
the three diagonals as hextants. In square-grid networks, addresses of the
four neighbors of (i, j) are (i± 1, j ± 1).

X

Y XY

I

II

III

IV

V

VI

(a)

(i, j) (i+ 1, j)

(i+ 1, j + 1)(i, j + 1)

(i− 1, j)

(i− 1, j − 1) (i, j − 1)

(b)

Figure 2: Hexagonal coordinate system.

Lemma 1. The graph distance (i.e., the minimum number of edges)
between points (x1, y1) and (x2, y2) in hexagonal lattice is given by
MAX{|dx|, |dy|, |dx− dy|}, where dx = x2 − x1 and dy = y2 − y1.

A variation of Lemma 1 appears in [2]. The difference in the expression
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for distance in this paper and in [2] is due to different coordinate system
choices. A proof of Lemma 1 appears in the appendix.

Lemma 2. The graph distance (L1 norm) between points, (x1, y1) and
(x2, y2) in square lattice is given by |dx| + |dy|, where dx = x1 − x2 and
dy = y1 − y2.

2.1 Problem Formulation

The k-hop interference model is defined as follows: a transmission is
successful if the shortest hop distance between the receiver and all concurrent
transmitters is greater than or equal to k (note that for k = 1, primary
interference constraints need to be taken into account explicitly).

Let G = (V ,A ) be a directed graph, where V and A represent the set
of nodes and arcs respectively. A subset a ⊂ A is called a matching if all
the links in a can be active simultaneously. A node schedule consists of a
discrete sequence of set of nodes N1, . . . ,Nm where every combination of one
arbitrary link from each node in Ni forms a matching. Let I be a finite index
set. The schedule is defined as S = (Ni, λi|i ∈ I) where λi is the duration of
time slot i. Let

χiv = 1 if v ∈ Ni
= 0, otherwise. (2)

The Minimum-Length Node Scheduling Problem [NSP] is defined as:

Minimize τ =
∑

i λ
i

subj. to
∑

i χ
i
vλ

i ≥ 1, ∀v ∈ V . (3)

2.2 Basis Lattice Section

Intuitively, a basis lattice section is a geometric region, replication of which
covers the entire lattice without overlapping.

Definition 1 (Basis Lattice Section). A section ψ of a lattice is defined to
be basis lattice section if linear translations of the replicas of ψ tessellate the
lattice, satisfying the following two conditions:

1. Coverage: Every lattice point lies within some replica of ψ.

2. Uniqueness: No lattice point lies within more than one replica of ψ.
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For example, a shaded rhombus in Figure 3(a) and a shaded rectangle in
Figure 3(b) are basis lattice sections of the hexagonal and square lattices,
respectively. Similar ideas have been used in the literature, particularly in
cellular networks (see e.g., [3]). An important difference, however, is that in
this work we are not tessellating the physical space.

Notations and conventions

• Let a basis lattice section ψ contain a lattice point p. Nl(p) denotes
the set of lattice points in ψ at graph distance l from p : Nl(p) = {q ∈
ψ | d(p, q) = l}, where d(p, q) denotes the graph distance between p
and q.

• Let p ∈ ψ be the lattice point with the smallest coordinate in every
dimension. Then we call p as the origin of ψ, and use p to refer to
ψ. For example, we refer to a quadrilateral basis lattice section whose
corner points are at (0, 0), (i, 0), (i, i), (0, i); i > 0 as “the basis section
at the origin.”

• Let p ∈ ψ. Then S(x, y) denotes the set of lattice points {q} such that
the relative coordinates of q (w.r.t. the basis lattice section containing
q) are the same as that of p. For example, the elements of S(0, 0) are
shown with circled dots in Figure 3.

(a) Rhombus basis section. (b) Rhomboid basis sections.

Figure 3: Basis lattice sections of hexagonal and square lattices. The circled
points represent one set of concurrent transmitters for 3-hop interference
model.
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3 Scheduling Algorithms

In this section we present node scheduling algorithms and establish their
approximation ratios. Our approach consists of determining a maximal set
of nodes that can be scheduled simultaneously along-with a suitable basis
lattice section where every basis lattice section contains one scheduled node.
The number of lattice points contained in the basis section gives the schedule
length. We use the clique number of interference graphs to analyze the
optimality of our algorithms.

3.1 Hexagonal Networks

Consider a rhombus of i edges drawn parallel to the two axes whose corner
points are (0, 0), (i, 0), (i, i) and (0, i) (Figure 3(a)). Clearly, this rhombus
satisfies the conditions for a basis lattice section.

Definition 2 (Rhombus Basis Section). In the following, we refer to the
basis lattice section of hexagonal lattice whose corner points are of the form
(x, y), (x+ i, y), (x+ i, y + i) and (x, y + i) as rhombus basis section.

Scheduling algorithm. Algorithm 1 solves NSP for hexagonal net-
works in (k + 1)2 slots. Starting with {(0, 0)} ∪ S(0, 0), it progressively
schedules nodes in {(k, k)} ∪ S(k, k), thus covering all nodes in the network.
An illustration of the slot sequence for the 3-hop interference case is shown
in Figure 4(a). Observe that the scheduling decision in a given slot is solely
based on the (lattice) address of a node and hence does not involve any
message passing.

Algorithm 1 Node scheduling algorithm for hexagonal networks

Input: (x, y) � Node address
Input: k � Interference model
1: u← x mod (k + 1)
2: v ← y mod (k + 1)

Output: t(x, y)← u+ (k + 1)v � Tx slot

Correctness proof.

Lemma 3. In a rhombus basis section ψ of length i located at (x, y), the max-
imum of the minimum graph distance between the lattice points in N1(x, y)
and any other lattice point in ψ is i− 1.
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Proof. To simplify the proof, we translate the origin to (x, y). Thus it is
sufficient to show that the lemma is true for the basis section at the origin.
N1(0, 0) = {(0, 1), (1, 1), (1, 0)}. From Lemma 1, the lattice points in the
rhombus basis section at distance l from (0, 0) are Nl(0, 0) = {(l − i, l), i =
0, . . . , l} ∪ {(l, l − i), i = 1, . . . , l}. Applying Lemma 1 once again, the
minimum distance between N1(0, 0) and Nl(0, 0) is l−1. Since in a rhombus
basis section of length i, the maximum value of l = i, the lemma follows.

Consider a layout of rhombus basis sections of side-length k where the
origins of the sections lie at (n(k+ 1),m(k+ 1)) where n,m are integers (Fig-
ure 3(a)). WLOG, consider the rhombus basis section at the origin and
let the node at the origin be scheduled for transmission. From Lemma 3,
the graph distance between N1(0, 0) and any other point in the section is
at-most k − 1. Since the graph distance between the nearest neighbors in
S(0, 0) is k + 1, the number of edges between all six neighbors of (0, 0) and
the nodes in S(0, 0) is at-least k. Therefore, all nodes in S(0, 0) can be
scheduled simultaneously.

Algorithm 1 schedules nodes in S(0, 0) in the first time slot, t = 0,
followed by those in S(1, 0) in the second time slot and so on till S(k, 0) in
t = k. It follows the same pattern for all rows in a rhombus basis section:
starting with nodes in S(0, i), that are scheduled in t = ik + k, it schedules
the last node of this row in t = (i+ 1)k + k. Since there are (k + 1)2 sets
of the form S(i, j) with respect to the rhombus basis section, using the
coverage property of the basis sections, we conclude that (k + 1)2 time slots
are sufficient. Thus we can state the following theorem:

Theorem 1. The NSP schedule complexity for hexagonal networks is bounded
from above by (k + 1)2.

3.2 Square-Grid Networks

The intuition behind the treatment for square-grid networks is as follows.
Consider the 3-hop interference model. Let the origin of the square lattice
be the location of one of the transmitters (Figure 3(b)). Then the nodes
at (±1, 0) and (0,±1) are the receivers. Clearly, nodes at (±4, 0) can be
scheduled simultaneously since their minimum distance from the neighbors
of (0, 0) is exactly 3. However, along the Y -axis, we can shrink the rhomboid
basis section by placing transmitters not at (0,±4), but at (±2,±2), thereby
decreasing the schedule length.
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(b) Square-grid networks

Figure 4: Schedules for 3-hop interference model.

Definition 3 (Rhomboid Basis Section). Rhomboid basis section of size (i, j)
is a basis lattice section of square lattice whose corner points are of the form
(x, y), (x+ i, y), (x+ i− j, y + j), (x− j, y + j).

Scheduling algorithm. Algorithm 2 solves NSP for square-grid net-
works using (k + 1)d(k + 1)/2e slots. Unlike the rhombus basis sections for
hexagonal networks, the rhomboid basis sections are not aligned parallel to
the (rectangular) axes. Hence, to further simplify the algorithm, we rearrange
the slot sequences to align with the axes: pictorially, we are simply cutting
the upper left triangle of the rhomboids and placing them to the right side of
the resulting trapezoids to complete a rectangle. In both cases, the number
of lattice points remain the same. In (Figure 4(b)), the dashed lines mark
the rhomboid basic sections and the solid lines mark the rectangles showing
the sequence in which Algorithm 2 assigns time-slots.

Similar to the hexagonal case, the algorithm selects the nodes for trans-
mission, S(x, y), systematically for all lattice points (x, y) in every basis
section. The rectangular basis sections are shifted along X-axis by dk/2e
alternately (Figure 4(b)). The presence of shifts is indicated by the Boolean
variable b (Line 1).

Correctness proof.

Lemma 4. In a rhomboid basis section of size (i, di/2e) located at (x, y), the
maximum of the minimum graph distance between lattice points in N1(x, y)
and any other lattice point in the rhombus basis section is i− 1.
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Algorithm 2 Node scheduling algorithm for square-grid networks

Input: (x, y) � Node address
Input: k � Interference model

1: b←
⌊(
y/
⌈
(k+1)

2

⌉)⌋
mod 2

2: u← (x+ (b ∗ d(k + 1)/2e)) mod (k + 1)
3: v ← y mod d(k + 1)/2e

Output: t(x, y)← u+ (k + 1)v � Tx slot

Proof. Similar to the proof of Lemma 3. WLOG we translate the origin to
(x, y). Thus it is sufficient to show that the lemma is true for the rhomboid
basis section at the origin. N1(0, 0) = {(0, 1), (1, 0)}. From Lemma 2,
the coordinates of the lattice points in the rhomboid basis section satisfy
|x|+ |y| ≤ i. Applying Lemma 2 once again, the maximum of the minimum
edge count between N1(0, 0) and a lattice point in the basis section is
i− 1.

Consider the node at the origin. Clearly, it can be scheduled along-with
the set of nodes at (±n(k + 1), 0) since they are at ≥ k edges from the
neighbors of (0, 0). Let P (u, v), v 6= 0 be the nearest node from the origin
that can be simultaneously scheduled. WLOG, let P be in the first quadrant
where v > 0. Then, P must be ≥ k edges from (0, 1), (1, 0), (k, 0) and
(k+1, 1), where the latter two are the neighbors of (k+1, 0). From Lemma 2,
we get the following two unique conditions:

u+ v − 1 = k

k − u+ v = k

⇒ v = d(k + 1)/2e = u. (4)

Thus, we have shown that the origins of rhomboid basis sections defined
above can be scheduled simultaneously, and more generally, the lattice
coordinates of the six nearest neighbors of a node at (x, y) that can be
scheduled simultaneously are (x ± (k + 1), y), (x ± u, y ± v) (Figure 3(b)).
The rest of the correctness proof can be completed in a similar manner as
done above for the hexagonal networks.

Theorem 2. The NSP schedule complexity for square-grid networks is
bounded from above by (k + 1)d(k + 1)/2e.
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3.3 Optimality Analysis

Interference graph of G = (V ,A ) is defined to be G ′ = (V ,A ′) where
(u, v) ∈ A ′ if simultaneous transmissions of the nodes u, v ∈ V interfere.
Clearly, the schedule complexity is bounded from below by the clique number
(number of nodes in a maximum clique) of the interference graph. Let
ω(G ′H , k) and ω(G ′S , k) denote the clique numbers of the interference graphs
for the k-hop interference model of hexagonal and square-grid networks,
respectively. We use subscripts e and o to denote the cliques for even and
odd k, respectively. Figure 5 shows some maximum cliques where we have
used the symbols for clique numbers to label corresponding figures.

(a) ω(G ′
H , 2) (b) ω(G ′

H , 3) (c) ω(G ′
s, 2) (d) ω(G ′

s, 3)

Figure 5: Maximum cliques

For a hexagonal interference graph and even k, a complete hexagonal
network of diameter k (k/2 concentric hexagonal rings where the ith ring has
6i nodes plus a node at the center) forms a maximum clique (Figure 5). For
odd k, a complete hexagonal network of diameter k − 1 and their neighbors
on any one side of a diagonal (excluding the nodes on the diagonals) forms a
maximum clique. Therefore, ω(G ′H , k) for even k is:

ωe(G
′
H , k) = 1 +

k/2∑
i=1

6i

= 3(k/2)2 + 3(k/2) + 1, (5)

and that for odd k is:

ωo(G
′
H , k) = 1 +

(k−1)/2∑
i=1

6i+ 3(k + 1)/2− 1

= 3(k/2)2 + 3(k/2) + 2. (6)

Interestingly, maximum clique in square-grid interference graphs is formed
by node arrangements analogous to the hexagonal interference graphs. For
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even k, k/2 complete concentric squares oriented at an angle π/4 and for
odd k, (k − 1)/2 complete concentric squares oriented at an angle π/4
plus neighboring nodes on any one side of an axis form a maximum clique
(Figure 5). Thus, it can be shown that:

ωe(G
′
S , k) = k2/2 + k + 1, (7)

ωo(G
′
S , k) = (k + 1)2/2. (8)

As we presented earlier, the exact schedule lengths of hexagonal and
square-grid node scheduling algorithms are (k + 1)2 and (k + 1)d(k + 1)/2e,
respectively. Since (k+ 1)2 = (4/3)ω(G ′H , k)− 1/3 for even k, and (k+ 1)2 =
(4/3)ω(G ′H , k) − 5/3 for odd k, the approximation ratio of the hexagonal
scheduling algorithm is 4/3.

For square-grid networks and even k, (k + 1)(k + 2)/2 < ρ ∗ ω(G ′S , k),
where ρ is a non-increasing function of k, and hence attains its maximum
5/4 at k = 2 (note that k > 0). For odd k, the approximation ratio is 1.
Thus, the approximation ratio of the square-grid scheduling algorithm is 5/4
and the algorithm is optimal for odd k’s.

4 Scheduling with SINR Constraints

We derive conditions such that the SINR criteria is satisfied at all receivers
when the scheduling algorithms presented in the previous section are used.
We make the non-limiting assumption of the path-loss exponent, γ > 2.
We also assume uniform noise level. Let d and D be the minimum and
maximum euclidean distances between a pair of neighboring nodes in a given
deployment. Since the sender-receiver separation is at-most D, the lower
bound on the received signal strength is given by:

SignalMin =
P

Dγ
. (9)

Observe that upper bound on interference is attained at a node at the center
of a deployment in a physical node placement configuration where the nodes
are located on regular lattice points having the inter-node separation equal to
d.

4.1 Hexagonal Networks

Simultaneously scheduled nodes fall on concentric hexagons in the lattice
representation, as shown in Figure 6(a). From Theorem 1, the minimum

12



(a) Hexagonal networks (b) Square-grid networks

Figure 6: A maximal simultaneously scheduled node set (shown with larger
dots.)

distance between simultaneously scheduled transmitters is k + 1 edges. Let
l denote the lower bound on the corresponding euclidean distance. Thus,
l = (k + 1)d. To get the upper bound on interference at the neighbors of
the transmitter at the origin, we use the symmetry of the network. We
derive the contribution from one hextant (Fig. 2(b)) and multiply it by 6.
WLOG, consider the nth concentric hexagon in the first hextant. The lattice
coordinates of the transmitters are (n(k + 1), 0), (n(k + 1), k + 1), . . . , (n(k +
1), (n− 1)(k + 1)). Let si,n denote the euclidean distance between the origin
and the ith transmitter. Then,

s2i,n ≥ n2l2 + (i− 1)2l2 − 2(i− 1)nl2 cos(π/3)

or, si,n ≥ l(n2 + (i− 1)2 − (i− 1)n)1/2

The euclidean distance between any of these n transmitters and any
neighbor of the node at the origin is lower bounded by si,n − d. Therefore,
an upper bound on interference is:

Interf. ≤ 6
∞∑
n=1

n∑
i=1

P

(si,n − d)γ
. (10)
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Expanding and simplifying (10), we get

Interf. <
6P

lγ

(
2√
3

)γ ∞∑
n=1

1

nγ−1
. (11)

<
6P

lγ

(
2√
3

)γ γ − 1

γ − 2
, (12)

=
6P

((k + 1)d)γ

(
2√
3

)γ γ − 1

γ − 2
, (13)

where (12) follows from a Riemann-Zeta function bound.
Thus, from (9) and (13), SINR is above threshold, β, if:

P >
βηDγ

1− 6β
(

2D√
3(k+1)d

)γ
γ−1
γ−2

. (14)

Since P > 0, the denominator must be greater than 0. Therefore:

D

d
<

√
3(k + 1)

2

(
γ − 2

6β(γ − 1)

)1/γ

. (15)

Finally, since D ≥ d,

β ≤

(√
3(k + 1)

2

)γ (
γ − 2

6(γ − 1)

)
. (16)

Plots of the feasibility regions given by (15)-(16) are shown in Figure 7.
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Figure 7: Feasibility region for hexagonal networks.
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Figure 8: Feasibility region for square-grid networks.

4.2 Square-Grid Networks

We proceed similar to the previous analysis, and use the same symbols as in
the hexagonal case. However, we put a superscript S when ambiguity may
arise, e.g., PS denotes the transmission power. For square-grid networks, the
set of simultaneously scheduled nodes fall on concentric squares (Figure 6(b)).
The corners of these concentric squares are at lattice coordinates (±n(k+1), 0)
and (0,±n(k + 1)). Observe that there are 2n transmitters on each of the
four sides.

s2i,n = n2l2 + (i− 1)2(l/
√

2)2 − 2(i− 1)nl(l/
√

2) cos(π/4)

or, si,n = l(n2 + (i− 1)2/2− (i− 1)n)1/2.

Upper bound on interference is:

Interf. ≤ 4
∞∑
n=1

2n∑
i=1

PS
(si,n − d)γ

. (17)

Unlike hexagonal networks, there is large difference in the distances between
the origin and the lattice points at the four corners, and between the origin
and the mid-point of a side of the squares. To obtain a tighter bound, we
bound the inverse distances of n/2 nodes centered at the midpoint by that
of the origin and nth lattice point, and bound the inverse distances of the
rest n/2 nodes of the side by that of the origin and n/2th lattice point (for
n = 1, the latter is the corner point).
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sn,n − d = nl

(
1√
2
− 1√

2

d

l
− d

nl
+

1√
2

d2

l2
+O

(
d3

l3

))
.

sn/2,n − d = nl

(√
5√
8
− 3√

40

d

l
− d

nl
+

1√
40

d2

l2
+O

(
d3

l3

))
.

Upon simplification:

Interf. <
4PS

((k + 1)d)γ
(νγ + φγ)

γ − 1

γ − 2
, (18)

where 1/ν = 1√
2
− 1√

2

(
1

k+1

)
, and 1/φ =

√
5√
8
− 3√

40

(
1

k+1

)
. Let us denote

νγ + φγ by α.

Thus, from (9) and (18), SINR is above threshold if:

PS >
βηDγ

1− 4αβ
(

D
(k+1)d

)γ
γ−1
γ−2

. (19)

Since the denominator must be greater than 0, we get:(
D

d

)
S

< (k + 1)

(
γ − 2

4αβ(γ − 1)

)1/γ

. (20)

From D ≥ d we get,

βS ≤ (k + 1)γ
γ − 2

4α(γ − 1)
. (21)

Plots of the feasibility regions defined by (20)-(21) are shown in Figure 8.

4.3 Discussions

The inequalities (14)–(16) and (19)–(21) specify feasibility regions in the
SINR parameter space where constant (in |V |) schedule complexity holds.
As the figures show, the feasibility region admits large enough β for typical
γ values to be useful in practice. Although the SINR parameters γ and β
may not be assumed to be user-controllable, the free parameter k, however,
is user-controllable and can be varied to reach a feasible operating point.
Since k controls spacing of neighboring simultaneously scheduled nodes,
increasing k can make a parameter set feasible. Furthermore, due to the
step used for deriving (15) and (20), the transmit power can be too high at
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operating points close the feasibility region boundaries. As we show in the
next section, increasing k lowers the transmit power level. This reduction is
rather dramatic for operating points that are very close to feasibility region
boundary.

5 Evaluation

While schedule length, determined by the free parameter k is fixed, SINR
varies at individual receivers due to irregular physical node placement. Let ρ
be defined as

ρ = SINR/β.

Then, the minimum value of ρ, denoted by Min(ρ), where the minimum
is taken over the SINR at all receivers being equal to 1 implies power
optimal operating point under uniform transmit power assignment policy.
Furthermore, it is desirable that the average ρ, denoted by Avg(ρ), also
be close to Min(ρ). In the following, we present Min(ρ) as well as the
ratio of Avg (ρ) and Min(ρ) obtained by simulation. We generated network
topologies where D was normalized to 1 and the node placement irregularity
was controlled by D/d, which was fixed for a given run. We determined the
physical location of node by using a uniformly distributed random number,
u, between 0 and D/d -1 and placing the node at a random point on the
circumference of a circle of diameter u/(2 + u) centered at a lattice point.

5.1 Utilization and Transmit Power Trade-off

In this set of experiments, we started at a feasible operating point close to
feasibility region boundary, and measured the variations in Min(ρ) and the
transmit power with the free parameter k, while keeping the values of all
other SINR and topological parameters fixed. We simulated a network of
4000 nodes. Since larger k implies longer schedule length, this experiment
essentially studies the utilization versus transmit power and utilization versus
optimality trade-offs.

We found that Min(ρ) and transmit power, both, decrease with increasing
k (Figs. 9(a)–9(b)), and the decrease gets very steep in the vicinity of
feasibility region boundary. At smaller values of k’s, the contribution of
interference (to SINR) is strong which results in higher transmit power for
smaller path-loss exponent, γ. However, as k gets larger, the contribution
of interference decays faster in comparison with signal strength attenuation,
which shows-up as the crossing of the transmit power curves.
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Figure 9: Utilization vs. optimality and power trade-offs.

5.2 Characterization of Min(ρ) Variations

We used a parameter 0 ≤ f ≤ 1 to select an operating point. The ratio D/d
was set to 1 + f ∗ ((D/d)max− 1) and the SINR threshold was set to f ∗βmax

as we varied f . Recall that the inequalities of the previous section determine
(D/d)max and βmax. We repeated these experiments for several values of
γ keeping k fixed to 2. The Min(ρ) variations are shown in Fig. 10(a) for
hexagonal networks and in Fig. 10(b) for square-grid networks. We then
fixed f to 0.5 and varied k. The data from these experiments are presented
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in Fig. 11. Observe that in the experiment described in Sec. 5.1, while we
varied k, we kept the other parameters fixed, whereas in this experiment, we
vary the other SINR parameters along with k in order to keep the parameters
D/d and β at their mid-points (f = 0.5).
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Figure 10: Min (ρi) at k = 2.

Besides correctness (SINR no less than the threshold: Min(ρ) ≥ 1), the
figures show that Min(ρ) remains within 2 for hexagonal networks and within
4 for square-grid networks. In all cases, as we shift the operating point
towards lower f , the performance gets better. The deviations from ρ = 1
are mainly due to the process of bounding the interference (18) and due to
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Figure 11: Min (ρi) vs. k, f = 0.5.

irregularity of node placements. As f → 0, ρ approaches 1, and in this part
of the feasibility region, the extent of irregularity starts to vanish. The values
of Min(ρ) for square-grid networks are higher than the corresponding ones
for hexagonal networks due to larger variations in the transmitter distances
for square-grid networks which resulted in less tight bound (18). It should
be kept in mind that this performance is achieved without message passing
overhead for either scheduling or power control.

Figs. 12-13 show the ratio Avg(ρ) / Min(ρ). For hexagonal networks,
this ratio remains within 1.5 indicating that uniform power assignment is
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acceptable. The ratio remains similar for f < 0.5 in square-grid networks.
However, as we approach the feasibility region boundary, these evaluations
suggest the need for non-uniform power assignment.
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Figure 12: Avg (ρi) / Min (ρi) at k = 2.

5.3 Network Size

Finally, we measured Min(ρ) and Avg(ρ) with increase in network size. As
Figs. 14(a)–14(b) show, both the minimum and average ρ are non-increasing
with increase in scale. The small fluctuations in the second figure, Figs. 14(b),
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Figure 13: Avg (ρi) / Min (ρi) vs. k, f = 0.5.

is due to the hexagonal structure being only partially complete.

6 Related Work

In one of the earliest works on regular wireless networks, Silvester and
Kleinrock investigated the capacity of multi-hop regular topology ALOHA
networks [25]. Recently, Mergen and Tong extended this work and analyzed
the capacity of regular networks [15]. In [13], Mangharam and Rajkumar
present a MAC protocol called MAX for square-grid networks with regular
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Figure 14: ρ as a function of node count: k = 2, γ = 3, f = 0.5.

node placement. In all these, transmission and interference ranges are
assumed to be the same, an assumption that we have gotten rid of in this
paper. In related previous work, the author presented a distributed algorithm
for convergecast in hexagonal networks [20], and investigated the feasibility
of hexagonal backbone formation in sensor network deployments [21].

McDiarmid and Reed showed that the chromatic number of general
hexagonal graphs is bounded by 4/3 times the clique number [14]. This
result suggests that our hexagonal scheduling algorithm, the complexity of
which is also bounded by 4/3 times the clique number, might indeed be
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very close to optimal. A 4/3-approximate distributed channel assignment
algorithm that uses several rounds of message passing is presented in [17].

The intractability of the minimum length scheduling problem has been
established for graph-based models in [26, 24] and for the SINR model in [4].
The scheduling algorithm in [4] as well as several other papers [4, 1, 12]
are centralized. In [11, 7], SINR-based distributed scheduling algorithms
are presented. These algorithms, however, are not collision-free and the
performance guarantee is probabilistic. In [23], a heuristic is presented, but
no formal analysis is offered. Gronkvist presents slot stealing strategies [5].
Power control strategies for cellular networks are presented in [9, 8].

7 Conclusion

In large-scale wireless sensor networks deployments, forming a regular topol-
ogy backbone is practically feasible. We presented collision-free STDMA-
based distributed scheduling algorithms that do not use message passing.
In sensor networks, communication is typically event-triggered and nodes
remain in sleep state much of the time to save the limited energy supply.
Hence schedulers that use little or no message passing are particularly suited
for sensor networks. We showed that the NSP schedule complexity of these
algorithms is independent of the number of nodes in the k-hop interference
model and within certain feasibility regions in SINR model. We characterized
these feasibility regions and saw that typical operating points are well covered
by these regions. Investigation of SINR scheduling with non-uniform power
assignments and of end-to-end delay are future work of interest.

A Proof of Lemma 1

Proof. By translating the origin to (x1, y1), the desired distance is equal to
the distance between the origin and (x2 − x1, y2 − y1). The following is a
proof by induction on the distance from the origin.

Base case: The six lattice points at unit distance form the origin are

(1, 0), (1, 1), (0, 1), (−1, 0), (−1,−1), (0,−1) (22)

which satisfy the lemma.
General case: Let the point (x, y), at distance n from the origin, satisfy

MAX{|x|, |y|, |x− y|} = n. Let the set {(x′, y′)} be the neighboring lattice
points of (x, y) at distance n+ 1 from the origin. Given that {(x′, y′)} is at
unit distance from (x, y), x′ ∈ {x, x± 1} and y′ ∈ {y, y ± 1}. Since (x′, y′) is
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a unit distance farther from origin than (x, y), at-least one of the following
holds:

|x′| = |x|+ 1, |y′| = |y|+ 1. (23)

However, from (22), if both x′ and y′ differ from x and y respectively, either
(x′, y′) = (x+ 1, y + 1) or (x′, y′) = (x− 1, y − 1). Thus,

|x′ − y′| = |x− y| ≤ n. (24)

Therefore, from (23) and (24), MAX{|x′|, |y′|, |x′ − y′|} = n+ 1. Hence the
lemma follows.
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