
A Distributed Algorithm for Hexagonal Topology Formation
in Wireless Sensor Networks ∗

K. Shashi Prabh† Chinmay Deshmukh‡ Shikhar Sachan‡

Abstract

Hexagonal wireless sensor network refers to a network
topology where a subset of nodes have six peer neighbors.
These nodes form a backbone for multi-hop communica-
tions. In a previous work, we proposed the use of hexag-
onal topology in wireless sensor networks and discussed
its properties in relation to real-time (bounded latency)
multi-hop communications in large-scale deployments. In
that work, we did not consider the problem of hexagonal
topology formation in practice – which is the subject of
this research. In this paper, we present a decentralized al-
gorithm that forms the hexagonal topology backbone in
an arbitrary but sufficiently dense network deployment.
We implemented a prototype of our algorithm in NesC for
TinyOS based platforms. We present data from field tests
of our implementation, collected using a deployment of
fifty wireless sensor nodes.

1 Introduction

Wireless Sensor Networks (WSN) refers to ad-hoc
wireless networks consisting of nodes that have sensing
capability. The distributed sensed data is collected and
processed by a subset of nodes, that generally involves
moving data over multiple hops. Since the channel is
shared and interference can cause corrupted packet re-
ceptions, its access needs to be regulated so as to pro-
vide bounded latency guarantees. The end-to-end latency
of such communications must be bounded to enable real-
time applications over WSN, which are important as en-
abling technology for novel applications, such as, health-
care through smart nursing homes, monitoring of critical
infrastructure and real-time tracking. However, provid-
ing bandwidth guarantees in wireless ad-hoc networks has
been proven to be NP-Hard [1].

There exist many TDMA based solutions that sched-

∗This work was supported by Fundação para a Ciência e a Technolo-
gia, Portugal.
†K. S. Prabh is with Centro de Investigação em Sistemas de Tempo-

Real, Instituto Superior de Engenharia do Porto, Portugal. email:

ksph @ isep.ipp.pt
‡C. Deshmukh and S. Sachan are with Department of Computer

Science, Indian Institute of Technology, Guwahati, India. email:

{chinmay,s.sachan} @ iitg.ernet.in

ule transmissions using message exchanges (to reach an
agreement) among neighboring nodes [12, 13, 14]. This
mechanism is communication intensive and often carries
significant processing overhead. Although this overhead
is not a major issue in traditional networks, such is not the
case for WSN where nodes have limited energy supply.
An alternative to this approach, proposed in [10], con-
siders the formation of a logical regular topology back-
bone for multi-hop routing of packets. It was shown that
for hexagonal node connectivity, one can obtain closed-
form expressions that determine TDMA schedules for
convergecast which leads tp nearly zero scheduling related
communication overhead. Considering regular, instead of
arbitrary, topology affords simple and efficient network-
ing protocols.

By hexagonal topology, we mean a network topology
where the nodes have six neighbors, except for those that
are at the edges of the network. This refers to node
connectivity, and is in contrast to hexagonal tessellation
which is often used to model cellular networks. In the
latter, one tessellates, or divides, the geographical area
into hexagonally shaped cells. Hexagonal topology results
from triangular tessellation (Figure 1). The corners of the
triangles are sites of nodes, which are called hexagonal
(also, equilateral triangular) lattice points. Due to practi-
cal reasons, which we discuss below, one can only expect
to realize hexagonal topology whose node locations only
approximate the hexagonal lattice points in typical WSN
deployments.

Forming hexagonal topology in WSNs presents some
unique difficulties. WSNs are characterized by large num-
ber of nodes. Networks with hundreds of nodes are not un-
common today. Some researchers have built WSNs with
thousands of nodes. Therefore, nodes can’t be assumed
to be placed at hand-picked locations. Physical features
of the deployment area may also exclude certain loca-
tions from node deployment. Furthermore, since radio
range varies with space and time, it is not possible to form
specific topologies by the means of physical placement
considerations alone. The work presented in this paper
maintains a lower bound on the separation of neighboring
nodes of hexagonal topology. In other words, the resulting
topology is semi-logical hexagonal.

In this paper, we present a distributed algorithm to form
semi-logical hexagonal topology in WSN deployments.



We implemented this algorithm in NesC. We also wrote
a simulator for the algorithm in C++. We describe the pro-
totype implementation and present data obtained from de-
ployments of TelosB and MicaZ motes.

The rest of this paper is structured as follows: In Sec-
tion 2, we present related work. We present the algorithm
to form hexagonal WSN in Section 3, followed by a sim-
ulation result in Section 4. We present a discussion of our
implementation of the algorithm in Section 5. We present
conclusions in Section 6.

2 Related Work

Takagi and Kleinrock established that the progress of a
multi-hop packet in wireless networks is maximized when
each node has 8 neighbors – the so called “magic num-
ber” [17]. This result inspired the design of K-neigh topol-
ogy control algorithm [3]. The K-neigh topology control
algorithm forms a topology with approximately k neigh-
bors to each node. COMPOW forms connected topology
at a common minimum transmission power level [9]. Xue
and Kumar established that for a flat (all nodes are peers)
network of n nodes to be fully connected, the number of
neighbors grow as Θ(log n) [18]. This result indicates that
a flat network organization is unsuitable for large-scale
WSN.

In a backbone based network (the approach taken in
this paper), a dominating set of nodes are used to route
multi-hop packets. The nodes that are not in this set are
one hop from some node in the dominating set. Clearly, it
is desirable that the cardinality of the dominating set be as
small as possible, but this is an NP-Complete problem [6].
SPAN is a heuristic that finds an approximate dominating
set [4]. In a hexagonal WSN, the backbone nodes form
a dominating set where the elements of this set are con-
strained to have six peer neighbors.

Previous topology control research has typically fo-
cused on achieving a certain node degree, ensuring con-
nectivity, maintaining certain throughput etc. [11, 15], but
not on regular topology formation techniques. In a pre-
vious work [10], we introduced hexagonal wireless sen-
sor network and discussed its properties in relation to the
problem of bounded latency multi-hop communications
in large-scale sensor networks. In that work, we did not
consider the problem of hexagonal topology formation in
practice. In this paper, we present a decentralized algo-
rithm that forms the hexagonal topology backbone. To
the best of our knowledge, no previous implementation of
hexagonal or any other regular topology formation in the
wireless domain exists. We note that a system of (wired)
multiprocessors arranged in hexagonal topology has been
reported previously [5, 16].

Figure 1. Hexagonal Topology

3 Semi-Logical Hexagonal Topology Algo-
rithm

In this section, we present an algorithm that selects,
from an arbitrary node deployment, a subset of nodes con-
nected in hexagonal topology. The physical placements
of the hexagonal nodes are weakly correlated to hexago-
nal lattice points. In other words, the deviation of actual
location of hexagonal nodes from ideal hexagonal lattice
points is bounded, or, the resulting hexagonal topology is
semi-logical. A hexagonal lattice is completely specified
by only one pair of neighboring lattice points (1). The eu-
clidean distance between two neighboring lattice points is
called the lattice side-length, or, side-length for short (Fig-
ure 1). In our algorithm, the target side-length is an input
parameter.

The nodes of hexagonal WSN are selected from a cir-
cular area centered at the ideal lattice points, which are
referred to as lattice sites henceforth. We chose circu-
lar regions for the simplicity of computation. The radius
of lattice sites is also an input parameter. Errors of lo-
calization need to be factored-in to determine the size of
lattice sites. We denote the side-length of hexagonal lat-
tice by S and the radius of lattice sites by σ. Observe that
the distance between any two neighboring nodes is upper
bounded by S + 2σ. We denote the minimum power level
of node ni’s radio to transmit to an arbitrary node at dis-
tance S + 2σ away by Pi (S + 2σ).

The hexagonal lattice has three main diagonals (Fig-
ure 1). We select a pair of the diagonals inclined at 120◦

to be the X and Y axes. The three diagonals divide the
lattice into six symmetric regions, which we call hextants.
Out of the two diagonals that define a hextant, we adopt
the convention of including the first anti-clockwise diag-
onal and the lattice sites centered on this diagonal to the
hextant. For example, in Figure 1, lattice sites C and D
are defined to be in the second hextant of A while the site
B is defined to be in the third hextant of A. We also say
that C is a first hop neighbor lattice site ofA in the latter’s

2



second hextant.
We denote a node by ni and its Cartesian coordinates

by (xi, yi). We assume that the nodes are localized prior
to running this algorithm [2, 7]. The process of topol-
ogy formation is initiated by a special node, n0 located at
(x0, y0). Another coordinate pair at distance S from n0,
(x1, y1), defines the X-axis and lattice side-length. The
hexagonal lattice points are given by

x0 ± nS/2, y0 ±m
√

3S/2 , (1)

where n and m are integers – both even or both odd. In
practice, one may program the initializer node with the
special node ID n0. Upon the completion of node local-
ization process, n0 will start the hexagonal topology for-
mation. To deal with node failures or dynamic changes in
the network, either n0 may be programmed to trigger the
hexagonal topology formation process periodically or the
process of peer neighbor selection may be run locally.

Our algorithm for hexagonal topology formation is pre-
sented in Figures 2–3, except for some optimizations and
non-essential details. In this algorithm, a node needs
to distinguish its neighbors (and the initializer node n0).
However, one can’t always assume the existence of unique
node addresses in WSN deployments. The word “ID”s in
the following presentation should be interpreted in a more
general sense. A unique node ID may be derived from the
node’s location, for example.

First, node n0 selects its hexagonal neighbors. The
newly selected hexagonal nodes then select their peer
neighbors and so on. After n0 finishes, multiple nodes
engage in topology formation in parallel. The algorithm
is described in detail below. Paragraphs that begin with
“[Lines x.y–z]” describe lines y to z of the algorithm pre-
sented in Figure x.
[Lines 2.4 – 9]. First, each node builds a table of

the locations of its neighbors. This neighbor table con-
struction step is initiated by node n0 that broadcasts an
InitPacket. Besides the sender node’s identification,
these packets contain {x0, y0; x1, y1; σ; xi, yi} where
(xi, yi) are coordinates of the sender node. Upon receiv-
ing an InitPacket for the first time, nodes determine the
Euclidean distance between their location and the near-
est hexagonal lattice point using (1). If this distance is
larger than σ , then the node exits the topology formation
or, “drops-out,” otherwise, it broadcasts an InitPacket
and inserts the sender’s ID and location in its neighbor ta-
ble. Upon receiving subsequent InitPackets, only the
neighbor table is updated.
[Lines 2.11–13]. These steps start at n0 after suffi-

cient time interval to allow the initialization broadcasts to
reach nodes 3 hops away. A hexagonal node selects its
neighbors from a set of potential candidates by applying
a series of evaluation criteria (quality indicating metrics).
This is accomplished by collecting neighbors’ neighbor
tables, count of non-empty neighbor lattice sites and count
of links with non-neighbor lattice sites. The last one is
split into two – count of links with non-neighbor lattice-

SEMILOGICAL-HEXAGONAL-TOPOLOGY (S, σ)
� This algorithm finds backbone nodes in the

neighborhood of hexagonal lattice points.
INITIALIZATION:

1 IsHexNode (n0)← TRUE
2 IsHexNode (ni)← FALSE ∀i 6= 0
3 HexPeerSelectionDone (ni)← FALSE ∀i

� InitPacket from node ni contains
{x0, y0; x1, y1; σ; xi, yi}

4 n0 broadcasts InitPacket at Tx power P0 (S + 2σ)
5 do Upon the first reception of InitPacket
6 if This node’s location is within distance

σ from some lattice point
then

7 Broadcast InitPacket (ni) at power Pi (S + 2σ)
8 Update neighbor table using InitPacket

else � Drop out
9 EXIT

endif
enddo

10 Use subsequent InitPackets to augment neighbor table

� Out of the two diagonals that define a hextant, we adopt
the convention of including the first anti-clockwise diagonal
and the lattice sites centered on this diagonal to the hextant.
� Ni[18] represents an array of node IDs. For k = 1 . . . 6,
Ni[k] 6= UNSET indicates that some neighbor of ni in
hextant k has been selected. Similarly, for k = 7 . . . 18,
Ni[k] indicate the second hop neighbors.
� “Non-empty lattice sites”⇒ sites with more than 0 nodes.

11 if {IsHexNode (ni)} AND { ¬ HexPeerSelectionDone (ni)}
AND {NoRaceCondition (ni)}
then

12 Request for neighbors’ neighbor tables, the number
of non-empty neighbor lattice sites and long-links

13 Call SELECT-BEST-NEIGHBORS to select
new neighbors in hextants Ni[1..6] = UNSET

14 Update and broadcast Ni[18] in SelectPacket
15 HexPeerSelectionDone (ni)← TRUE

endif

17 do Upon receiving SelectPacket
18 if This node’s ID ni ∈ Nj [18]
19 then
20 IsHexNode (ni)← TRUE
21 elseif This node’s location is within

distance σ from some nk ∈ Nj [18]
then � Drop out

22 EXIT
endif

enddo

Figure 2. Semi-logical hexagonal topology
formation algorithm.

3



SELECT-BEST-NEIGHBORS

� Node ni maintains an array p[6]. Each response
of the broadcast request (of a hexagonal node to select
its new peers) contains the count of a node’s
non-empty neighbor lattice sites. p[k] contains the
maximum of non-empty neighbor lattice site count of
all responses from nodes at the lattice site in hextant k.

1 do Upon receipt of the response from each node nj

� Let q(nj) be the count of non-empty neighbor
lattice sites of nj . Let k be the hextant of nj w.r.t. ni.

2 if p[k] > q(nj) OR N [k] 6= UNSET
then

3 Purge the response
else

4 Update p[k] if necessary
5 Purge other responses that have non-empty

neighbor lattice site count < p[k]
endif

enddo

� After all responses are received (or at time-out):
6 if p[i]

then
7 Remove responses of nodes from site i that don’t

have neighbors at the sites (i± 1)%6, unless the
latter are empty (If p[(i± 1)%6] OR N [(i± 1)%6]
is false then the nodes at site i are at the edge.)

endif

� Now, all nodes in the response set are viable and
in a certain sense optimal candidates
(See Claim 1 for a proof).

8 Sort the remaining candidates in increasing LLF
where LLF is the count of previously selected nodes
that are more than 1 hop away from the candidate
node but are in its neighbor table.

9 If the number of candidates with the smallest LLF
is more than one, further sort these in increasing LLU ,
where LLU is the count of lattice sites that are more
than 1 hop away from the candidate node but at-least
one node of such sites are in its neighbor table.

10 If the number of candidates with the smallest LLU
and LLF is more than one, sort these in the order of
decreasing LQI, where LQI stands for the link quality
indicator. Pick the node with the largest LQI.

Figure 3. Hexagonal neighbor selection.

A B

Figure 4. Common lattice sites of A and B

sites where hexagonal nodes are already selected and that
where hexagonal nodes are yet to be selected. After broad-
casting the request, SELECT-BEST-NEIGHBORS is called
to process the responses. We associate an array N of 18
elements with each hexagonal node (or, each lattice site).
The elements of N contain the Node-IDs of its 6 first-hop
neighbors and 12 second-hop neighbors in a specified or-
der. In our implementation, we chose anti-clockwise order
starting at the x-axis. The unset elements of N indicate
the sites where peer nodes are yet to be selected. Rou-
tine SELECT-BEST-NEIGHBORS applies a set of metrics
to select its peer neighbors.
[Lines 3.1–5]. The count of a node’s neighboring lat-

tice sites that are non-empty is used as the most signif-
icant metric. The goal of this metric is to favor those
nodes that offer extending the topology to larger extant
when they will be selecting their peers (i.e., to increase
the geographical coverage of the network with hexagonal
nodes). Observe that this is only a local optimization.
[Line 3.7]. In the following, we use the lower-case let-

ters a and b for nodes, and the upper-case letters A and B
for the lattice sites that contain them. Let some node a be
selecting its peers (Figure 4). If node b is selected, then it
should also be the neighbor of two hexagonal nodes at the
common neighborhood sites of a and b, which we denote
by AB±. Node a can determine whether b is a neighbor
of some already selected hexagonal node (by a or by some
other node earlier) at these common sites by scanning the
neighbor table of b. Thus, b sends the list of its neighbors
at the sites AB± (only). Node a retains responses of only
those nodes at the lattice site B that have neighbors at the
lattice sites AB± (unless the the sites AB± are empty,
which may happen if the nodes are at the edge) while it
discards others.
Claim 1. Suppose that in the neighborhood of node a,
αi is the set of peer candidate nodes at lattice site Ai who
have neighbors at lattice sites Ai±1%6 whenever Ai±1%6

are non-empty. Let q(a) be the number of the peer neigh-
bors of a. Then, any greedy selection of peer nodes from
set αi maximizes q(a).

Proof. Proof by contradiction. Since hexagonal nodes
are selected by other peer nodes, there exists at-least one
neighbor of a (except when a is the base node no, where
an empty peer set makes this claim trivially true). Let
us assume that the greedy selection finds a neighbor b in
hextant k but not in at-least one of the neighboring hex-
tants of k, say l, whereas, some other selection process
finds a neighbor b′ in hextant k and c′ in hextant l. We
have a contradiction if b and b′ are the same. Otherwise,
b′ must have been available to the greedy selection, since
only those nodes are discarded from αi that have no neigh-
bors in their common lattice sites. Since b′ was available
to the greedy selection, b, which has no neighbor in hex-
tant l must have been discarded. Once again, we have a
contradiction.

4



[Lines 3.8–10]. If more than one candidate for hexago-
nal node exist at some given lattice site, then the follow-
ing metrics are applied in sequence (in decreasing order
of importance):

• Nodes that have the minimum number of long-links
with previously selected hexagonal nodes. We chose
this filtering step as the most important one since it
has the effect of favoring those nodes whose trans-
missions interfere with the least number of other
backbone nodes.

• Nodes that have the minimum number of long-links
with some node in lattice sites that are more than 1-
hop away. This filtering step has the effect of elim-
inating those nodes whose transmission range is too
large in order to mitigate interference.

• Nodes that offers the best link quality.

[Lines 2.14–22]. Once a node completes the neighbor
selection process, it broadcasts its list of 1 and 2-hop
neighbors. Upon selection of some hexagonal node at any
given lattice site, all other nodes at this site exit the topol-
ogy selection process.

Race avoidance. Race conditions may arise when
newly selected nodes start the process of selecting their
peers in parallel (Line 2.11). For example, in Figure 1,
some node at site A selects new nodes at B and C. Since
site D is common to B and C, the process of peer node
selection by B and C must be serialized.

For race avoidance, the newly selected nodes send
a ReadyToSelect advertisement broadcast before pro-
ceeding to initiate the process of selection of their peers.
Nodes that are already in the process of peer selection
send DenySelectionInitializtion messages. Other-
wise, a OKSelectionInitializtion message is sent.
Ties are broken in favor of smaller Node ID. If a node
receives any DenySelectionInitializtion message,
it suspends the selection process till it hears the broad-
cast done at the end of a selection process or a time-out.
If a node has received OKSelectionInitializtion
contention messages from all nodes that may cause
the race condition or, if it does not receive any
DenySelectionInitializtion message until a time-
out, it starts the process of selecting its peers (Line 2.11).
This race avoidance mechanism may fail if the envelop of
the topology formation process becomes concave (Placing
n0 at the center of the deployment helps in this respect).
Termination of the topology formation. When some

newly selected node can’t find a new peer node, it con-
cludes that it is at the network’s edge and hence sends
topology termination message to the node that selected it.
When a node receives termination message from all the
nodes that it selected, it sends its own termination mes-
sage. The topology formation process terminates when all
the children of node n0 terminate.

4 Simulation

We wrote a simulator for our hexagonal topology for-
mation algorithm.1 We present the result of a run of our al-
gorithm on a network of 100 nodes arranged in 25 hexag-
onal lattice sites. The sites were arranged in 5 rows of
5 sites each. The radius of lattice sites was 0.4 * side
length. Within each lattice site, we distributed 4 nodes
at uniformly random locations. We added random fluc-
tuations to the radio signal strength. Figure 5 shows the
connectivity graph of a flat network (all nodes are peers).
Figure 6 shows the simulator generated hexagonal topol-
ogy on the same graph. Nodes connected by solid (red)
lines form the hexagonal backbone.

Figure 5. Connectivity graph: Initially

5 Prototype Implementation

We implemented our hexagonal topology formation al-
gorithm in NesC for platforms running TinyOS and con-
ducted field experiments with this implementation to es-
tablish the feasibility of decentralized hexagonal topol-
ogy formation in WSN deployments. In this section, we
present the details of our implementation and the experi-
ments.

We used TelosB and MicaZ motes. TelosB motes fea-
ture MSP430 micro-controller, 10KB volatile memory,
48KB program memory and integrated light, temperature
and humidity sensors. MicaZ motes feature MPR2400
micro-controller, 4KB volatile memory and 128KB pro-
gram memory, and sensor boards are attached through
an expansion slot. Both platforms use CC2420 radio
transceiver, which has programmable transmission power
level. The CC2420 transceiver provides received signal
strength indicator (RSSI) and link quality indicator (LQI)
measurements of each received packet.

TelosB motes have internal monopole antenna. We ob-
served that successful packet transmission between a pair

1We are putting the simulator code in the public domain. We have
not provided the URL here since it may change. The code can also be
obtained by contacting the first author.

5



Figure 6. Connectivity graph: After running
hexagonal topology formation algorithm

Figure 7. Dead-zones of communication be-
tween a pair of TelosB motes

of TelosB motes not only depends on the distance between
the nodes but also on their relative orientation. Certain
placement configurations when these motes can’t commu-
nicate even if the radiated power of the transmitter at the
receiver’s location should be sufficiently high, span almost
90◦. Other configurations where these dead-zones extend
to very small angular span also exist. In Figure 7, we show
one placement configuration where dead-zone extends to
90◦. The arrows correspond to the line that passes through
the center of the mote and the arrowhead aligns with the
location of the mote’s USB port. Replacing the internal
antenna of TelosB with an external antenna solves this
problem.

We deployed about 50 motes in a 50 ft× 120 ft audito-
rium. The schematics of the deployment is shown in Fig-
ure 8. Our target was a hexagonal backbone of 32 nodes
arranged in 7 rows where each row was either 4 or 5 hops
wide. The target side-length of hexagonal topology was
10 ft. The diameter of the network was 7 hops or, approx-
imately 70 ft. The topology formation initializer node, n0

Figure 8. Deployment layout

was placed in the center of the fifth row. Localization in-
formation was added manually before compiling and load-
ing program images to the motes. The motes were placed
at approximately the pre-specified coordinates.

Since some of the steps of topology formation algo-
rithm start upon receiving of broadcast messages, a num-
ber of nodes can execute in synchrony. If packet transmis-
sions follow the broadcast, hidden node collisions may oc-
cur. To reduce such collisions, we added random waits af-
ter receiving such broadcasts. Furthermore, to ensure the
reliability of the critical transmissions, we used packet ac-
knowledgments. However, TelosB motes generates false
acknowledgments frequently (This issue is reported in
TinyOS Enhancement Proposal 127 [8].) We used soft-
ware generated acknowledgments as a workaround.

The selection of the radius of the lattice site involves a
trade-off between node density and the extant of interfer-
ence. It is immediately clear that as the area of lattice sites
become smaller, a larger density of nodes is needed to en-
sure that the lattice sites are not empty. In Section 3, we
pointed out that the desirable transmission range of hexag-
onal backbone nodes is side-length + 2σ. Since interfer-
ence range is larger than the transmission range, larger σ
implies that the number of hexagonal nodes interfered by
a given transmission increases with σ. Furthermore, the
distance between any two neighboring hexagonal nodes is
lower bounded by side-length - 2σ. Therefore, σ ≤ side-
length/ 2 to ensure that no node belongs to more than one
lattice site. In dense deployments, large values of σ lead
to large number of messages in response of neighbor se-
lection broadcast (Line 3.1). It may lead problems due
to limited memory capacity of the nodes. In such cases,
a suitably small value for σ needs to be chosen. Finally,
selecting a too small σ may leave holes in the network.

We chose the radius of the lattice sites as side-length/ 3

6



or, 3.3 ft. We ensured that at-least one node was placed in
each lattice site. As we explained in Section 3, to speed-up
the topology formation process, a subset of newly selected
hexagonal nodes execute the process of the selection of
peer nodes in parallel (Line 13, Figure 2). It is necessary
to avoid the race conditions that arise due to this paral-
lelization. To test the race avoidance properties of our im-
plementation, we placed multiple nodes at the locations
where we anticipated race conditions. We repeated the
experiment 10 times. In all repetitions, one and only one
node from each lattice site was selected.

The average time to complete the formation of hexago-
nal topology was 78 seconds. The minimum time taken to
complete the topology formation was 50 seconds and the
maximum was 108 seconds. The focus of this experimen-
tal evaluation was to establish the feasibility of hexago-
nal WSN on existing hardware. The implementation was
not optimized for performance. For example, we did not
determine a minimum value for various time-outs. It is
highly likely that with optimizations, the average topol-
ogy formation time for the deployment scenario presented
above will be lower than 78 seconds. Optimization of our
prototype implementation and a more thorough evaluation
of the optimized implementation is an ongoing work.

6 Conclusions

The idea of an arbitrary WSN but with regular topol-
ogy backbone is quite promising since it provides a rich
design space for simple, yet very efficient, network proto-
cols, including those for real-time communications. Our
distributed algorithm, its implementation and testing pro-
vide the evidence that hexagonal topology WSN is realiz-
able in practice.

7 Acknowledgment

We thank Jianxin Chen for his help with the field tests.
We also thank one of the anonymous reviewers for very
valuable suggestions that improved the quality of this pa-
per’s presentation.

References

[1] E. Arikan. Some complexity results about packet ra-
dio networks. IEEE Transactions on Information Theory,
30(4):681–685, Jul 1984.

[2] J. Aspnes, T. Eren, D. K. Goldenberg, A. S. Morse,
W. Whiteley, Y. R. Yang, B. D. Anderson, and P. N. Bel-
humeur. A theory of network localization. IEEE Transac-
tions on Mobile Computing, 5(12):1663–1678, 2006.

[3] D. M. Blough, M. Leoncini, G. Resta, and P. Santi. The K-
Neigh protocol for symmetric topology control in ad hoc
networks. In MobiHoc ’03: Proceedings of the 4th ACM
international symposium on Mobile ad hoc networking &
computing, pages 141–152, New York, NY, USA, 2003.
ACM.

[4] B. Chen, K. Jamieson, H. Balakrishnan, and R. Mor-
ris. SPAN: An energy-efficient coordination algorithm for
topology maintenance in ad hoc wireless networks. In
ACM Wireless Networks Journal, pages 85–96, 2001.

[5] M.-S. Chen, K. G. Shin, and D. D. Kandlur. Address-
ing, routing, and broadcasting in hexagonal mesh multi-
processors. IEEE Transactions on Computers, 39(1):10–
18, 1990.

[6] M. R. Garey and D. S. Johnson. Computers and In-
tractability — A Guide to the Theory of NP-Completeness.
W. H. Freeman & Co., New York, NY, 1990.

[7] K. Langendoen and N. Reijers. Distributed localization
in wireless sensor networks: a quantitative comparison.
Computer Networks, 43(4):499–518, Nov. 2003.

[8] D. Moss and P. Lewis. TEP 127: Packet link layer.
http://www.tinyos.net/tinyos-2.x/doc/html/tep127.html.

[9] S. Narayanaswamy, V. Kawadia, R. S. Sreenivas, and P. R.
Kumar. Power control in ad-hoc networks: Theory, archi-
tecture, algorithm and implementation of the COMPOW
protocol. In in European Wireless Conference, pages 156–
162, 2002.

[10] K. S. Prabh and T. Abdelzaher. On scheduling and real-
time capacity of hexagonal wireless sensor networks. In
ECRTS ’07: Proc. of the 19th Euromicro Conference
on Real-Time Systems, pages 136–145. IEEE Press, Los
Alamitos, CA, 2007.

[11] R. Rajaraman. Topology control and routing in ad hoc
networks: a survey. SIGACT News, 33(2):60–73, 2002.

[12] V. Rajendran, K. Obraczka, and J. J. Garcia-Luna-Aceves.
Energy-efficient collision-free medium access control for
wireless sensor networks. In SenSys ’03: Proc. of the
1st international conference on Embedded networked sen-
sor systems, pages 181–192, New York, NY, USA, 2003.
ACM Press.

[13] S. Ramanathan. A unified framework and algorithm for
channel assignment in wireless networks. Wirel. Netw.,
5(2):81–94, March 1999.

[14] I. Rhee, A. Warrier, M. Aia, and J. Min. Z-MAC: a hybrid
MAC for wireless sensor networks. In SenSys ’05: Proc. of
the 3rd international conference on Embedded networked
sensor systems, pages 90–101, New York, NY, USA, 2005.
ACM Press.

[15] P. Santi. Topology control in wireless ad-hoc and sensor
networks. ACM Comput. Surv., 37(2):164–194, 2005.

[16] K. G. Shin. HARTS: A distributed real-time architecture.
Computer, 24(5):25–35, 1991.

[17] H. Takagi and L. Kleinrock. Optimal transmission ranges
for randomly distributed packet radio terminals. IEEE
Transactions On Communications, COM-32(3):246–257,
1984.

[18] F. Xue and P. Kumar. The number of neighbors needed
for connectivity of wireless networks. Wireless Networks,
10:169–181, 2004.

7


