
Localizing Objects in Large-Scale Cyber-Physical Systems∗

Björn Andersson Shashi Prabh

IPP-HURRAY Research Group, CISTER/ISEP, Polytechnic Institute of Porto, Portugal
E-mail: {bja, ksph}@ .isep .ipp .pt

Abstract

We use the term Cyber-Physical Systems to refer to large-
scale distributed sensor systems. Locating the geographic
coordinates of objects of interest is an important problem
in such systems. We present a new distributed approach
to localize objects and events of interest in time complexity
independent of number of nodes.

1. Introduction

One of the most frequent problems faced by distributed
sensor system designers is to find the location of an object.
Consequently, this problem has been extensively studied
previously, especially in signal processing and sensor net-
works research communities. In this paper, we address the
problem of localizing objects in large-scale Cyber-Physical
systems consisting of millions of nodes in time complexity
that is independent of the number of nodes.

A distributed sensor system deployment with 1000 nodes
has already been reported [4]. In order to scale such systems
to millions of nodes, the cost of an individual node must be
kept small. So far, single-chip sensor nodes have not been
manufactured in such large quantities, and consequently, the
cost of individual sensor nodes has remained high. There
are indications however of a convergence of wireless sen-
sor network and RFID technologies such that RFID tags are
used more and more for sensing tasks [1, 10]. This is sig-
nificant since RFID tags are used widely in industry and are
produced in billions of units annually at very low unit-cost.
Furthermore, they are increasingly becoming more “capa-
ble” with programmable microprocessor, memory, sensors
and sometimes even energy-storage devices (such as a bat-
tery or a capacitor). This evolution will foster an increasing
interest in large-scale sensor systems.

There exist a number of solutions for node as well as
event localizations. A survey of localization literature can

∗This work was partially funded by the Portuguese Science and Tech-
nology Foundation (Fundação para a Ciência e a Tecnologia - FCT) and
the ARTIST2 Network of Excellence on Embedded Systems Design.

be found in [5]. The localization technique presented by
Ledeczi et. al. has been demonstrated to be successful on
wireless sensor networks [7]. The authors consider their so-
lution better than the other existing localization techniques.
This technique is based on matching of audio signatures of
rifle shots on a centralized server. Unfortunately, such so-
lutions have a time complexity of O(m) in a single broad-
cast domain, where m is the number of sensor nodes. In
this paper, we present a distributed algorithm for finding
the location of an object. All sensor readings can affect the
outcome of the localization calculation and the time com-
plexity is independent of the number of sensor nodes. Our
solution takes advantage of a prioritized MAC protocol that
is collision-free if the priorities are unique. The widely used
CAN bus [6] is the base protocol upon which the priori-
tized MAC protocol for wireless networks, called WiDOM,
is built [3].

The remainder of this paper is organized as follows. Sec-
tion 2 presents details of the localization problem formula-
tion. Section 3 presents a background on the communica-
tion system we assume. Section 4 presents our algorithm to
solve the localization problem. Section 5 presents conclu-
sions.

2. Problem Formulation

Given a set of objects, we want to determine the geo-
graphical location and time associated with them. We use
the terms “objects” and “events” of interest interchangeably.
Let m denote the number of nodes of the sensor network.
Let H(x,y,z,t) denote the hypothesis that an object was lo-
cated at (x,y,z) at time t. Let N (x,y,z,t) denote the num-
ber of nodes that accept the hypothesis H(x,y,z,t). We do
not make any assumption about the mechanism by which
the hypotheses are accepted or rejected – our algorithm is
neutral to such mechanisms. Algorithms used to accept or
negate the hypothesis can be as simple as a binary “yes/
no” based on sensor reading threshold or it could be based
on matching the pattern of a sequence of sensor readings
to a set of known signature signals. The latter approach is
taken for the sniper detection system [7], where sequences

1



of audio samples are gathered on a centralized node and the
following optimization problem is solved: find x,y,z,t that
maximize N (x,y,z,t).

In this paper, we use a fully distributed algorithm to esti-
mate N (x,y,z,t) (see Section 4). This distributed algorithm
exploits the communication system. We will design our so-
lution under the following assumptions. We assume that
nodes know their own location but they do not know the lo-
cation of any other node. We assume that all nodes are in a
single broadcast domain.

3. Communication

A key building block of our new solution is the inno-
vative use of a prioritized medium access control (MAC)
protocol. For this reason, it behooves us to understand it
further. Section 3.1 discusses how a prioritized MAC pro-
tocol can be used to compute the minimum of sensor read-
ings. This initial understanding helps us to also understand
how to estimate COUNT (in Section 3.2) efficiently. The
COUNT primitive will turn out to be crucial in our localiza-
tion.

3.1. Prioritized MAC

Let us consider the simple application scenario as de-
picted in Figure 1a, where a node (node N1) needs to know
the minimum (MIN) temperature reading among its neigh-
bors. A traditional approach would be that N1 broadcasts a
request to all its neighbors and then N1 waits for the replies
from all of its neighbors. Clearly, even with a perfect a time
division multiple access, this approach, the execution time
is of the order of the number of neighbor nodes, i.e., O(m).

Consider now that instead of using their priorities to ac-
cess the medium, nodes use the value of its sensor reading
as priority. For the simplicity sake, we assume that the sen-
sor readings are coded as n-bit unique integers. Starting
with the most significant bit first, let each node send the
sensor reading bit-by-bit. Let us consider that the chan-
nel implements a logical-AND of the transmitted bits and
for each transmitted bit and nodes read the resulting AND
value in the channel (something straightforward in the wired
medium). Finally, suppose that if a node reads ‘0’ and is
transmitting a ‘1’, it stops transmitting (Figure 1b). Then, at
the end of the transmission of n bits, the “observed” value
in the channel will correspond to the MIN. It is as if all
m temperature readings were transmitted in parallel (Fig-
ure 1c). Observe that for this case of computing MIN, there
is no need for message payload.

The medium access control (MAC) protocols that ex-
hibit this logical AND behavior are known as Dominance
(or, Binary-Countdown) protocols [9]. In the implementa-
tions of this protocol (e.g., the Controller Area Network or,

(a) Naı̈ve algorithm

(b) CAN arbitration

(c) WiDOM

Figure 1. Illustrations: (a) (#Nodes -1) re-
sponses as a result of the MIN request of N1,
(b) Bit-wise arbitration, (c) Only one response
is generated for the same request.

2

2



CAN), messages have a unique contention field, which typ-
ically corresponds to a priority that is used to resolve the
contention for channel access. After the completion of con-
tention resolution phase, the node having message with the
highest priority is granted channel access.

Current wireless transceivers can not transmit and re-
ceive data simultaneously. Therefore, for wireless net-
works, a node “transmitting a 1” performs carrier sensing
only. All nodes “transmitting a 0” transmit simultaneously.
Thus, those nodes that were “transmitting a 1” (i.e., do-
ing carrier sensing) and sense a ‘0’ being transmitted lose
the tournament for channel access, and stop competing for
channel access any further. Only those nodes that transmit-
ted a ‘0’ or did not lose in the round i, take part in the round
i + 1 of the tournament.

In the following section, we apply this idea to get an es-
timate of number of nodes (having a certain property) in the
network. We call this problem COUNT.

3.2. COUNT

The intuition behind our method of estimation of
COUNT is as follows: If the contention field is a non-
negative random number obtained at run-time, then the
probability that the minimum value of the contention field is
0 approaches 1 as the number of nodes get very large. How-
ever, if there are only few nodes, then it is highly unlikely
that the minimum among the random values is zero. From
this observation, one can see that it is possible to estimate
the number of nodes by computing the MIN of the random
numbers.

The pseudo code of the algorithm for estimating the
number of nodes is shown in Algorithms 1 and 2. The
main algorithm (Algorithm 1) assumes that all computer
nodes start their execution simultaneously and uses a global
boolean variable active as input, indicating if the node
should be considered in the COUNT operation. When per-
forming Algorithm 1, all nodes have active equal to TRUE
and proceed in following way. First, on line 8, the algo-
rithm generates a random number in the range [0, MAXV ],
then all nodes send their random number. When nodes call
send empty, the priority of the winner is returned and
hence all nodes know the minimum random number (line
12). This is performed k times. The line 17 uses a func-
tion, shown in Algorithm 2 to compute the estimation of the
number of nodes based on the minimum numbers obtained
on line 12. The if statement on line 14 deals with the un-
likely event that one of the minimum random numbers is
MAXV . The design of the function in Algorithm 2 can be
explained in terms of maximum-likelihood estimation. The
reader can find more details on COUNT in [2].

Algorithm 1 Estimating COUNT (the number of nodes)
Require: All nodes start Algorithm 1 simultaneously.

1: active - a global boolean variable indicating if the node
is considered in the COUNT

2: function nnodes(j : integer, x : array[1..k] of integer)
return a real

3: r : array[1..k] of integer
4: x : array[1..k] of integer
5: q : integer
6: for q ← 1 to k
7: if (active = TRUE) then
8: r[q]← random(0, MAXV )
9: else

10: r[q]←MAXV
11: end if
12: x[q]← send empty(r[q])
13: end for
14: if (∃q : x[q] = MAXV ) then
15: est nodes← 1
16: else
17: est nodes←ML estimation(x[1], x[2], ..., x[k])
18: end if
19: return est nodes // the estimation of COUNT

Algorithm 2 Function ML estimation

Require: The division of two integers (as is done in line 6)
returns a real number.

1: function ML estimation(x : array[1..k] of integer) re-
turn an integer

2: v : array[1..k] of real
3: sumv, q : integer
4: sumv ← 0
5: for q ← 1 to k

6: v[q]← ln

(
1

1− x[q]
MAXV

)
7: sumv ← sumv + v[q]
8: end for
9: return d k

sumv e
10: end function

3

3



4. Localization Algorithm

In Section 2, we presented the problem formula-
tion where finding x,y,z,t corresponds to maximizing
N (x,y,z,t). Computing N (x,y,z,t) at a specific point is
however expensive in terms of communication. But we can
use the COUNT primitive that we presented in Section 3.2.
Let NEST (x,y,z,t) denote the estimate of N (x,y,z,t). Our
goal is now to find x,y,z,t such that NEST (x,y,z,t) is
maximized. Since the function NEST (x,y,z,t) is “noisy,”
more than one maximizer for NEST (x,y,z,t) may exist. If
NEST (x,y,z,t) is a sufficiently good estimate of N (x,y,z,t)
then these maximizers will be close if they represent the
same event. In the case of multiple events, then multiple
maximizers exist, and consequently, multiple hypotheses
can be accepted. Observe that this is a problem of uncon-
strained optimization. It is known that pattern searching
algorithms work well for such problems [8].

Let us reiterate our findings so far. We have found that a
suitable way of designing a scalable localization algorithm
is to (i) find x,y,z,t such NEST (x,y,z,t) is maximized,
(ii) NEST (x,y,z,t) can be computed with the COUNT al-
gorithm described in Section 3.2 and (iii) pattern searching
is appropriate for solving the problem (i).

Algorithm 3 is based on these findings. The idea is that
some node puts forward a hypothesis. It could be any node.
However, nodes close to the events are better candidates
since such a choice is likely to lead to a short search. All
other nodes accept or reject the hypothesis and the node that
puts forward the hypothesis counts the number of nodes that
accepts the hypothesis. If the number of accepting nodes is
not sufficiently large, other hypotheses are also considered
and if one of them is accepted by more sensor nodes then
the new hypothesis becomes the current hypothesis. The
procedure is repeated until the hypothesis is accepted.

5. Conclusions

We have presented an algorithm for finding the loca-
tion of an object. The algorithm has the virtue of having
a time-complexity that is independent of the number of sen-
sor nodes. Questions of finding the best way of doing the
hypothesis verification and search, efficient localization of
many objects and implementation of this algorithm on ex-
isting hardware are open.

References

[1] http://www2.lifl.fr/pops/senseid2007/.
[2] B. Andersson, N. Pereira, and E. Tovar. Esti-

mating the number of nodes in wireless sensor
networks. Technical Report TR-060702, IPP-
HURRAY group, Institute Polytechnic Porto, avail-

Algorithm 3 Localization algorithm – pseudo code
Require: All nodes start Algorithm 3 simultaneously.

1: Some node, say node Ni broadcasts the hypothesis
H(x, y, z, t)

2: Nodes decide to accept or reject the hypothesis
3: Node Ni counts the number of nodes that accepted the

hypothesis using the technique described in Section 3.2
4: if a sufficiently large number of nodes accepted the hy-

pothesis then go to 7.
5: else
6: Do hypothesis search in the neighborhood of

(x,y, z, t). For example, consider:
H(x±∆x, y±∆y, z±∆z, t±∆t) where ∆’s represent
search neighborhood size.

if none of the exploratory moves had a higher NEST

then increase the neighborhood size and search again
else
let xe,ye,ze,te denote the coordinate among the
exploratory moves with the highest NEST .

x := xe; y := ye; z := ze; t := te
increase the search neighborhood size

go to step 4
7: The values x,y,z,t is the location sought.
8: Case: Multiple events. If there exists a node Nk that

can form another hypothesis with sufficiently differ-
ent variables from previously accepted hypotheses, then
Nk broadcasts its hypothesis and the algorithm starts
from step 1. The algorithm terminates when no suffi-
ciently different new hypothesis can be accepted.

able at http://www.hurray.isep.ipp.pt/privfiles/hurray-tr-
060702.pdf, 2006.

[3] B. Andersson, N. Pereira, and E. Tovar. Widom: A domi-
nance protocol for wireless medium access. IEEE Transac-
tions on Industrial Informatics, 3(2):120–130, 2007.

[4] A. Arora et al. Exscal: Elements of an extreme scale wire-
less sensor network. In Proc. of the 11th IEEE Intl. Conf. on
Embedded and Real-Time Computing Systems and Applica-
tions (RTCSA’05), pages 102–108, Washington, DC, USA,
2005. IEEE Computer Society.

[5] J. Bachrach and C. Taylor. Localization in sensor networks.
Wiley, 2005.

[6] Bosch GmbH, Stuttgart, Germany. CAN Specification, ver.
2.0, 1991.

[7] A. Ledeczi, A. Nadas, P. Volgyesi, G. Balogh, B. Kusy,
J. Sallai, G. Pap, S. Dora, K. Molnar, M. Maroti, and G. Si-
mon. Countersniper system for urban warfare. ACM Trans.
Sen. Netw., 1:153–177, 2005.

[8] R. M. Lewis, V. Torczon, and M. W. Trosset. Why pattern
search works. In Technical Report, Baltimore, Maryland,
1998.

[9] A. K. Mok and S. Ward. Distributed broadcast channel ac-
cess. Computer Networks, 3:327–335, 1979.

[10] J. Want. Enabling ubiquitous sensing with RFID. IEEE
Computer Magazine, 37:84–86, 2004.

4

4


